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—Bereshit, Torah

And God said: ‘Let there be light.’
And there was light.

—Genesis, Torah
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Anthony Peter Simpson
1948–2009,
in a season of ‘bright sadness’.
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At the beginning of the twentieth century, Albert Einstein replaced the aether theory
with relativity. However, a twenty-first century aether is still puzzling physicists
today: it is called the quantum vacuum.

The quantum vacuum is the ground state of the physical fields. Although the
average of the electromagnetic field is zero in its ground state, its amplitude still
fluctuates. These vacuum fluctuations give rise to the ‘Casimir force’ between
dielectric bodies—a sticky force that is ubiquitous throughout nature. It causes
parking tickets to attach to windscreens and the moving parts of micromachinery to
attract and stick together.

Despite theoretical work for more than half a century, this ‘Casimir effect’ is not
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puzzles and paradoxa concerning this mysterious phenomenon. In particular, he
clearly demonstrates that the most sophisticated modern theories of the Casimir
force fail when they are confronted with dielectrics where the refractive index is not
uniform but changes smoothly.
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foundations of Casimir theory at the level of a good textbook. Students or interested
researchers can easily follow the discussion and learn the state of the art, as art it is.

The author, William Simpson, was a Ph.D. graduate student at the University of
St Andrews in the UK, and a visiting student at the Weizmann Institute of Science
in Israel; I had the pleasure of being his supervisor. During his research, he also
spent several months at The University of Trento in Italy where he learned from
Prof. Lev Pitaevskii, one of the early pioneers of Casimir theory. William is now a
postdoctoral fellow at The Weizmann Institute.
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In addition to Physics, William has a wide range of interests and talents. He
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The philosopher Roger Scruton, recalling William’s movements among the sci-
ences and the humanities, described him as ‘a serious and imaginative thinker…
(and) a man capable of organising and leading others in the pursuit of truth’. His
thesis is written in clear, beautiful English—a delight to read.

Rehovot, May 2014 Prof. Ulf Leonhardt
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Preface

Credo ut intelligam.1

—St Anselm of Canterbury, Proslogion, 1

This is a book on quantum forces. More specifically, it is about predicting certain
kinds of forces that arise between macroscopic bodies, for which we require quantum
electrodynamics. More precisely, it is about the problem of predicting the size and
nature of these quantum-mechanical forces when they arise within inhomogeneous
media, in which the optical properties of a material are continuously changing as a
function of position. However, in attempting to apply existing theory to such cases—
and the general presumption is that it ought to be applicable—we uncover a number
of surprises. In a sense, the basic thrust of this thesis is not so much to persuade its
readers of certain answers as to convince them of unresolved questions. Some
precise solutions to new problems are to be found within these pages, each of them
interesting in its own right, but they are representative of a rather small class of
Casimir problems involving inhomogeneous media that can be solved at present.

I hope this provocative paragraph will prove sufficiently intriguing to induce the
turning of a few more pages, as I mean to avoid disclosing too many ‘plot spoilers’.2

I should warn the reader that it is also my preference to introduce formal physical
theory inmuch the sameway as I have learned it when left tomy own devices—that is,
as and when it is needed. While certain things are assumed to be familiar (some basic
electrodynamics and some quantum mechanics, for instance), I occasionally invoke
ideas or results beyond the common core of a Bachelor degree in Physics that are not
‘fleshed out’ until a subsequent section, when I think I can get awaywith doing so. For
themore axiomaticallyminded, this may cause someminor abrasion. Nevertheless, to
insist on understanding everything before we will say anything about it, do anything

1 Translated: I believe in order that I may understand.
2 For a summary of the conclusions, see the Outlook.
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with it, or invest some kind of belief in it, is a limit inwhich nothingmay ever be said or
done again; the heat-death of the universe is the state that requires the most infor-
mation, but the prospects for doing Physics at this point seem rather bleak.

Outline of Chapters

This thesis is divided up as follows. In Part I, the basic foundations of Casimir Physics
are introduced to the reader, consisting of Casimir’s groundbreaking thought-
experiment, the prediction of the original Casimir force, a discussion of dispersion
forces in general, select experimental verifications of Casimir phenomena, and the
generalisation of the Casimir Effect to arbitrary geometries and more realistic
materials using the basic framework of macroscopic quantum electrodynamics.

In Chap. 1, we consider Casimir’s original thought-experiment, involving two
perfect mirrors in a vacuum at zero temperature. Casimir’s prediction of a finite,
attractive force is recovered, following a discussion of how to regularise (and then
renormalise) the infinite zero-point energy of the electromagnetic field, whose
‘quantum fluctuations’ are claimed to be the cause of it. The Casimir force, in fact,
is part of a family of dispersion forces that Casimir studied, ubiquitous in nature,
and we take a few moments here to survey the broader field, touching on both van
der Waals and Casimir-Polder phenomena. The chapter is concluded by briefly
reviewing some of the important experimental verifications of the Casimir effect.

Chapter 2 presents an outline of some of the basic elements of the theory of
macroscopic quantum electrodynamics (macro-QED), affording a formal basis for
ideas alluded to in Chap. 1, and deriving some of the principal results that will be
used throughout this discussion, including the Lifshitz formula for the force
between two separated dielectric half-spaces, and the ground-state energy of a
quantum field. A new argument is offered for the correct form of the Casimir-
Lifshitz stress tensor. The discussion, however, remains phenomenologically dri-
ven: the additional lengths we would be obliged to go to in presenting a properly
canonical theory of macro-QED are not deemed to pay sufficient dividends for our
restricted purposes, and may be studied elsewhere.

With the basics of macro-QED in place, Chap. 3 offers a brief excursus on the
subject of the disputed nature of the Casimir force, which has been described, on
the one hand, as an effect resulting from the alteration of the zero-point electro-
magnetic energy, by the imposition of external boundary conditions, and, on the
other hand, as simply a giant van der Waals force between the metal plates.
A different perspective is put forward, in which the Casimir force is seen to arise
from the fluctuations of a polariton field involving the coupled, quantised system of
dielectric material and electromagnetic fields. In its ground state, the system cannot
be separated into material or electromagnetic quanta, which arguably splits the
debate about the nature of the force straight down the middle.

In Parts II and III, we consider the case of the Casimir force in inhomogeneous
media. Four peer-reviewed calculations are presented, resulting from this research,
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the first two focussed on the general problem of extending present theory to the case
of macroscopic bodies in which the optical properties are varying continuously (the
surprises), and the second two targeting exceptional cases of inhomogeneous media
where the Casimir force can be determined exactly using ideas from transformation
optics, leading to some interesting questions (the conundrums).

In the beginning, we considered the case of the Casimir force between two
parallel plates separated by empty space, and subsequently saw that the force could
also be calculated for the case in which the cavity is filled with a liquid medium.
Chapter 4 asks the simple question of what happens to the force when the medium
between the plates is inhomogeneous; that is, when the refractive index profile
of the interposing liquid varies continuously as a function of position. A calculation
is presented, based on Casimir’s original approach to the cavity problem, but
introducing the simple modification of a spatially dependent permittivity between
the plates. A finite prediction for the Casimir force appears to be possible using a
simple mode summation.

Chapter 5 reconsiders the same problem, only this time using the more
sophisticated apparatus of Lifshitz theory, in which the detailed dispersive behav-
iour of the medium can be incorporated. The stress tensor inside the medium is
determined using a piece-wise approximation, which is then taken to the continuum
limit. However, the predicted force is now surprisingly illusive, and the possible
need for incorporating additional information about the system, and perhaps more
of the microphysical properties of the liquid, is discussed.

Noting the pathological nature of the Casimir-Lifshitz stress in an inhomogeneous
medium,Chap. 6 considers the possibility of introducing an idealised inhomogeneous
medium in the chamber that effectively modifies the size of an empty cavity. In this
case, the Casimir force should be predictable and finite. The apparent contradiction
with the previous chapter (Chap. 5) is explored and resolved, and in doing so we are
able to determine an exact expression for the Casimir force for the case of a ‘C-slice’
that (theoretically) reduces quantum stiction between attractive surfaces.3

In Chap. 7, we consider the case of the Casimir stress in Maxwell’s fisheye—
another inhomogeneous metamaterial with some remarkable properties. The stress
tensor is infinite everywhere throughout the medium. However, a simple alternative
regularisation is motivated, resulting in a finite stress tensor, leading to some per-
plexing questions about the nature of regularisation and our current understanding
of the Casimir force.

Our journey ends with a survey of what we have learned in the Outlook, some
suggestions for how to take this work further forward, and the proposal of a new
experiment. I hope you enjoy the ride.

Rehovot, February 2014 Dr. William M.R. Simpson

3 The phenomenon of quantum stiction leads to technological difficulties for micro and nano-
electromechanical devices.
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Part I
Foundations of Casimir Theory



Chapter 1
Introduction

I mentioned my results to Niels Bohr, during a walk. “That is
nice”, he said, “That is something new”. He mumbled something
about zero-point energy. That was all, but it put me on a new track.

Hendrik Casimir, Comments on Modern Physics 5–6: 175

1.1 Casimir’s Thought-Experiment

The Casimir force derives its name from the scientist who first predicted it [1].
Hendrik Casimir was a Dutch physicist of the last century who made many contri-
butions to Physics, but is most famous for predicting the phenomenon that carries
his name. Casimir speculated that two perfect mirrors facing each other in a vacuum
would experience an attractive force as a result of vacuum fluctuations present in the
cavity, even at zero temperature—a prediction that was subsequently confirmed in a
number of critical experiments decades later [2–5].

1.1.1 The Ground State Field Energy

Casimir’s thought-experiment concerns a cavity formed by two perfectly conduct-
ing, infinitely large plates, and the ground-state energy of the electromagnetic field
in the cavity. In general, this ‘zero-point energy’ can be stated as a simple mode
summation1:

Ecavi t y = �

2

∑

k

ρ(k)ωk, (1.1.1)

1 It is assumed that the reader is familiar with the quantisation of a simple harmonic oscillator and
the notion of a zero-point energy in this context. For readers unversed in QED, its simple application
to the quantised field should be taken on faith, along with a few subsequent appeals to field-theoretic
notions, until the next chapter: credo ut intelligam.

© Springer International Publishing Switzerland 2015
W.M.R. Simpson, Surprises in Theoretical Casimir Physics, Springer Theses,
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4 1 Introduction

Fig. 1.1 The walls of the cavity impose boundary conditions on the field modes; only modes with
nodes at the locations of the boundaries can be sustained within the cavity

where ρ(k) is the degeneracy of the mode with wave number k and frequency ωk

satisfyingMaxwell’s equations and the relevant boundary conditions. For the purpose
of this calculation, we position the plates at x = 0 and x = a, and take the height and
breadth of the cavity to be L y and Lz . Because the plates are perfectly conducting,
the transversal components of the electric field and the normal component of the
magnetic field must vanish on these boundaries [6]:

Ey(x = 0) = Ey(x = a) = 0, (1.1.2)

Ez(x = 0) = Ez(x = a) = 0. (1.1.3)

This leads us to consider a different set of field modes from the plane waves of free-
space. The field in the cavity is constituted by a set of discrete standing wave modes
(see Fig. 1.1) with wave numbers

kx = mπ

a
, ky = pπ

L y
, kz = qπ

Lz
, m, p, q ∈ Z

+. (1.1.4)

Maxwell’s equations are satisfied by the dispersion relation

ω = ck = c
√

k2x + k2y + k2z = wmpq , (1.1.5)

where wmpq are the discrete eigenfrequencies of the set of standing waves between
the plates. The electromagnetic field admits two polarisations, except for cases in
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which m, p or q is zero, for which there is only one. However, both polarisations are
degenerate here,2 so that

ρ(k) → ρmpq =
{
2 m, p, q > 0,
1 m = 0, p = 0, or q = 0.

(1.1.6)

The ground-state energy (1.1.1) of the system is summed over m, p and q:

Ecavi t y = 1

2

∞∑

m,p,q

�ρmpq ωmpq . (1.1.7)

In the limit as L y, Lz → ∞, ky and kz become infinitesimal, and we can replace
the p and q summations with integrals by setting

dp = L y

π
dky, dq = Lz

π
dkz . (1.1.8)

The triple sum in (1.1.7) can then be rewritten

cL y Lz

π2

∑

m

ρm

∞∫

0

dky

∞∫

0

dkz

√
k2x + k2y + k2z , (1.1.9)

where the original weighting function has been replaced3 by

ρm =
{
2 m > 0,
1 m = 0.

(1.1.10)

We can rewrite the double-integral above more succinctly in polar coordinates by
replacing k2y + k2z with

k2‖ = k2y + k2z , ky = k‖ cosφ, kz = k‖ sin φ, (1.1.11)

so that

∞∫

0

dky

∞∫

0

dkz

√
k2x + k2y + k2z =

π/2∫

0

dφ

∞∫

0

dk‖ k‖
√

k2x + k2‖ . (1.1.12)

2 This is not always the case. For example, in a cavity containing an inhomogeneous liquid the
modes of the field are not degenerate. See Chap.4.
3 The points p = 0, q = 0 now have only infinitesimal weightings in the integral summation, so
the factors of 1/2 can be neglected.

http://dx.doi.org/10.1007/978-3-319-09315-4_4
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We thus arrive at an expression for the ground-state energy of a cavity formed by
two large, perfect mirrors, separated by a distance a:

E

A
= �c

4π

∑

m

ρm

∞∫

0

k‖dk‖
√

k2x + k2‖ . (1.1.13)

In Eq. (1.1.13) A = L y Lz is equal to the area of one of the plates.

1.1.2 Regularising the Energy

Unfortunately this expression (1.1.13) for the energy of the cavity is infinite. How-
ever, infinite series abound in quantum field theory, and in this case a regularisation
of (1.1.13) can be effected with a little physical common sense: Casimir asks us to
recall that a perfect mirror is an idealisation that does not exist in nature; the cavity
cannot keep arbitrarily high frequencies from leaking out [1]. To incorporate this
physical fact about the dispersive nature of the mirrors, we can multiply (1.1.13)
with a damping function exp(−ξω/c), writing

Ẽ

A
= �c

4π

∑

m

′
∞∫

0

k‖dk‖
(

k2x + k2‖
)1/2

exp(−ξω/c), (1.1.14)

where ξ is a cut-off parameter and
∑′

m = ∑
m ρm . This sum is now clearly con-

vergent4: as ω becomes large the contribution to the energy vanishes. However, this
modified expression for the energy may no longer be considered as the total energy
of the system of field plus mirrors. Taken literally as such, (1.1.14) would imply that
the eigenfrequencies of the field eventually all tend to zero, an assumption for which
there is no obvious motivation. Instead, (1.1.14) should be interpreted as the part of
the total energy (1.1.13) that is associated with the configuration of the mirrors in
the cavity; it is the free energy available to do work on the mirrors.

To assist with the calculation, we can reconceive our problem as a Casimir piston
involving three parallel plates, in which the two outer plates are fixed and only the
inner plate is permitted to move (see Fig. 1.2). We then need not worry about how the
energy density varies outside the cavity [7]. Equation (1.1.14) is now supplanted by

Ẽ

A
= − �c

4π

∑

m

′ ∂

∂ξ

∞∫

0

k‖dk‖ exp
(

−ξ

√(mπ

a

)2 + k2‖

)
+ {a → L − a}, (1.1.15)

where a → (L −a) indicates a repetition of the previous expression with a replaced
everywhere by L − a, to include the contribution from the right side of the cavity,

4 Introducing an exponential within the summation over frequencies is a standard technique [9].
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Fig. 1.2 Schematic of the
Casimir piston. Two fixed
mirrors are positioned at
x = 0 and x = L , enclosed
by reflecting walls at
y = ±L y/2 and z = ±Lz/2
(dashed lines). Within the
chamber is vacuum, and a
moveable mirror at x = a

and the bracketed prefactor in (1.1.14) has been replaced by a partial derivative with
respect to ξ. The regularisation may now proceed. The integral in (1.1.15) may be
solved by applying the identity

d

dk‖

[(
ξ−1

√(mπ

a

)2 + k2‖ + ξ−2

)
e
−ξ

√
(mπ

a )
2+k2‖

]
= −k‖e

−ξ
√
(mπ

a )
2+k2‖ .

(1.1.16)
It follows from (1.1.15) and (1.1.16) that

E

A
= − �c

4π

∞∑

m=0

′ ∂

∂ξ

[(
1 + ξmπ/a

ξ2

)
e−ξmπ/a

]
+ {a → L − a}. (1.1.17)

Calculating the derivative with respect to ξ, then replacing prefactors by derivatives
with respect to ξ, we obtain

Ẽ

A
= �c

2π

[
1

ξ3
− 1

ξ2
d

dξ
+ 1

2ξ

d2

dξ2

] ∞∑

m=0

′
e−ξmπ/a + {a → L − a}. (1.1.18)

The m-dependent weighting on the primed sum may be removed by multiplying it
by a factor of two and subtracting a term ε that does not depend upon the position of
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the mirror.5 The summation within (1.1.18) is then a geometric series which can be
evaluated,

∑∞
m=0 e−αm = 1/(1 − e−α), yielding

Ẽ

A
+ ε = �c

2π

[
1

ξ3
− 1

ξ2
d

dξ
+ 1

2ξ

d2

dξ2

]
eξπ/2acosech(ξπ/2a) + {a → L − a}.

(1.1.19)
The introduction of the damping factor represents a rather artificial model for the
behaviour of the mirrors at high frequencies. We therefore separate the energy into
those parts that depend on the cut-off term ξ, and those that do not. In anticipation
of taking the limit ξ → 0 (that is, of removing the cut-off) the quantity to the right
of the square brackets in (1.1.19) is expanded up to the third power in ξ3:

eξπ/2acosech(ξπ/2a) ∼ 2a

ξπ
+ 1 + 1

3

(
ξπ

2a

)
− 1

45

(
ξπ

2a

)3

. (1.1.20)

Inserting (1.1.20) into (1.1.19) produces finally

Ẽ

A
= �c

[
3L

π2ξ4
− 1

πξ3
− π2

720a3 − π2

720(L − a)3

]
. (1.1.21)

As expected, the energy becomes increasingly large in the limit where the effects of
the regularisation disappear – that is, as ξ → 0. However, by expanding in terms of
the cut-off parameter ξ, we have been able both to identity and distinguish a diverging
part of the energy and a part that depends on the position of the mirror. Remarkably,
the latter part is independent of ξ. One may interpret this to mean that, so long as ξ/a
is negligibly small (i.e. neglecting the positive powers of ξ in (1.1.21) is legitimate),
the part of the energy that depends on a is independent of how the mirror becomes
transparent at high frequencies/wave–vectors.

1.1.3 The Finite Casimir Force

We determine the force on the moveable mirror by differentiating the energy (1.1.21)
with respect to its position variable a. The first two terms depending on ξ disappear,
effectively completing the removal of the cut-off. The force on the moveable mirror
is then found to be

F

A
= − π2

�c

240a4 + π2
�c

240(−a + L)4
, (1.1.22)

5 The term ε corresponds to one half of the contribution of the sum at m = 0 for both sides of the
cavity. It is equal to �c/πξ3.
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which consists of an attractive force directed towards the parallel plate on the left,
and an attractive force in the opposite direction, pointing towards the plate on the
right. In the limit as L → ∞ (that is, as the third plate is removed an infinite distance
to the right), we recover the famous expression for the Casimir force between two
parallel plates [1]:

F

A
= − π2

�c

240a4 . (1.1.23)

It is worth taking a moment to reflect on this remarkable result. From the infinite
ground-state energy of the quantised electromagnetic field, which had hitherto been
dismissed by many physicists (up to the calibre of Dirac) as physically meaningless,
Casimir discovered a finite and physical contribution that depends upon the size of
the cavity, varying with the inverse fourth power of the distance between the plates. It
must be emphasised that this force is tiny: for two 1×1 cm plates separated by 1µm,
Casimir’s equation predicts a force of 0.013 dyne, comparable to about 1/1,000 the
weight of an ordinary housefly [8]. Nevertheless, there is an energy available for
doing mechanical work.

Furthermore, the expression derived is surprisingly simple. The Casimir force,
thus formulated, appears to depend on nothing besides a mechanical property of the
system (the distance a) and a prefactor incorporating Planck’s constant � and the
speed of light in a vacuum c. On this analysis, the phenomenon appears to arise
solely due to a topological modification of the vacuum, effected in this case by the
external boundary conditions imposed on the field by two parallel plates. In fact,
things are somewhat more complicated. We will return to the subject of the nature
of the Casimir force in Chap.3.

1.1.4 Renormalisation and Background Energies

Theorists sometimes refer to an additional step in the calculation of the Casimir
force, omitted in the discussion above, in which the energy is renormalised. This
renormalisation is typically effected prior to the removal of the regulariser, and it
involves the computation and subtraction of a so-called ‘background energy’ that
reproduces and therefore removes the diverging terms. The renormalised energy that
remains is then a finite quantity. In our case, however, the divergences disappear in
the course of computing the force derivatives, and the remaining terms involving the
cut-off are nullified in the limit ξ → 0. The finite energy associated with the Casimir
Effect can then be computed retroactively.

Still, the purist may feel faintly troubled by this departure from the standard
procedure, and there is a good reason why we have omitted it from the calculation
of the force here: it does not entirely work. Let’s try to follow the recipe exactly,
without recourse to the usual mathematical bag of tricks, such as zeta functions or
the Euler-Maclaurin series [9, 10]. Instead, we will only allow ourselves Casimir’s
physically motivated regularisation. The background energy E∞ (the energy of the

http://dx.doi.org/10.1007/978-3-319-09315-4_3
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free field) can be computed as follows. In general, the energy per unit volume is
given by

E∞
V

= �c

2

∫
ρ(k)

k dk3

(2π)3
, (1.1.24)

where ρ(k) is a density function. Here, ρ(k) = 2. The volume of free space we
are considering is V = L3. Therefore, the background energy per unit area can be
conveniently written in the form

E∞
A

= �cL

2π2

∞∫

0

∞∫

0

k‖ dk‖dkx

√
k2x + k2‖, (1.1.25)

in which the volume integral was recast as a cylindrical polar integral, introducing
k‖ as before (1.1.11–1.1.12), and then integrating over the azimuth. This quantity
is clearly infinite. In order for the subtraction between the two energies to be well-
defined, renormalising the energy E → Ẽ , both must be submitted to the same
regularisation:

Ẽ = lim
ξ→0

[E(ξ) − E∞(ξ)] . (1.1.26)

The regularised background energy, pursued in the same spirit as before, takes the
form

Ẽ∞
A

= −�cL

2π2

∂

∂ξ

∞∫

0

∞∫

0

k‖ dk‖dkxexp
(
−ξ

√
k2x + k2‖

)
. (1.1.27)

The integral over k‖ is performed, once again using the identity (1.1.16), leading to

Ẽ∞
A

= −�cL

2π2

∂

∂ξ

∞∫

0

dkx

(
1 + ξkx

ξ2

)
e−ξkx . (1.1.28)

Calculating the derivative with respect to ξ, then rewriting prefactors as derivatives
with respect to ξ, we find that

Ẽ∞
A

= �cL

π2

(
1

ξ3
− 1

ξ2
∂

∂ξ
+ 1

2ξ

∂2

∂ξ2

) ∞∫

0

dkx e−ξkx . (1.1.29)

The integral is easily evaluated as 1/ξ and (1.1.29) simplifies to

Ẽ∞
A

= �c
3L

π2ξ4
. (1.1.30)
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This is identical to the first term of (1.1.21). It indicates that this divergence in
the energy is an artifact of our treatment of empty space. In the absence of cavity
walls (or, for cavity walls that are infinitely separated from each other), the Casimir
energy should be zero. The subtraction of this term from any Casimir calculation in
a Minkowsi space appears entirely justified.

However, there is a second divergent term in (1.1.21) which is neither removed by
the standard renormalisationprocedure (1.1.26) nor assigned semantics, producing an
infinite contribution to the energy in the limit as ξ → 0. This additional divergence
is associated with the presence of the mirrors and the m = 0 contribution to the
energy; it appears to correspond to waves propagating parallel to the plates. In the
calculation of the Casimir force in a vacuum, it does not depend upon the position of
the moveable mirror, and consequently makes no contribution to the force. However,
this independence may be entirely fortuitous. We have no grounds for supposing that
this will always be the case, and from what follows in subsequent chapters, we may
find reason for doubting that it is. As we will see, even in more sophisticated theories
of the Casimir Effect, divergences seem to lie in wait along these axes. But first, we
should place this discussion in its proper context.

1.2 Dispersion Forces

It was Bohr, in fact, who put Casimir on the right track for his famous prediction
by mumbling “something about zero-point energy” during one of their conversa-
tions. Casimir was working on colloids6 at the time in connection with the Philips
Research Laboratory in the Netherlands. The properties of these viscous materials
are determined by van der Waals forces. However, the theory developed by Fritz
London [11, 12] failed to explain the experimental measurements for the interaction
between two molecules [13], until Casimir and his colleague Dirk Polder corrected
it [14]: the assumption that one dipole moment polarizes another particle instanta-
neously is only valid if the distance is much smaller than the typical wavelength
of the fluctuating fields between the two molecules. On abandoning this so-called
quasi-static approximation, the predicted force is significantly modified.

Casimir realised that the problem could be solvedmore simply in terms of vacuum
fluctuations, using normal-mode quantum electrodynamics. He then consideredwhat
might happen if the two molecules were replaced by two mirrors facing each other in
a vacuum, leading to the famous prediction we have just re-derived [1]. The Casimir
force, in fact, is part of a family of dispersion forces that Casimir studied, along with
other physicists, which we will briefly review in this section. They are forces that
share a number of common features:

First, they are regarded as effective electromagnetic forces; they are modelled as
forces acting on each object as a whole, in a system in which the interacting objects
are spatially separated and specifiable in terms of their centre-of-mass positions and
orientations, ensuring no overlap in their respective wave functions. Secondly, the

6 A colloid is a mixture in which particles of one component are suspended in a continuous phase
of another component.
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dispersive characterisation of these forces alludes to the variation with frequency of
the relevent atomic properties (or the properties of the media) involved in producing
them. Both the polarisability of atoms, and the permittivities and permeabilities of
bulk materials, exhibit a frequency-dependence that more realistic models attempt to
capture. The study of dispersion forces, in the past, was typically restricted tomaterial
objects and fields interacting in their respective ground-states, but many results have
now been generalised to include thermal fields and systems in excited states. In
this study, however, we wish to focus on purely quantum-mechanical effects, and
will restrict ourselves to the consideration of systems at zero temperature in their
ground-states.

Two commonways of classifying dispersion forces are bymaking reference either
to the characteristic length scale of the interacting system (how far apart the interact-
ing objects are) or the size of the objects themselves and how they are modelled (as
microscopic particles or bulk media). The first division falls between retarded and
non-retarded forces. As Verwey and Overbeek discovered [13], when the distance
between the interacting objects is on the scale of atomic transition wavelengths, the
force is no longer essentially the electrostatic Coulomb interaction that dominated
the non-retarded case. For these retarded forces, the finite speed of light and hence
the retardation of the field must be taken into account. The second classification is
a division that cuts three ways across two length scales, partitioning dispersion phe-
nomena into van der Waals, Casimir-Polder and Casimir-Lifshitz forces. It is worth
taking a few moments to touch on each of these categories.7

1.2.1 Van der Waals Forces

The van der Waals rubric is typically restricted to the microscopic case of forces
between atoms and molecules. These forces are ubiquitous throughout nature.
In physical chemistry they feature in the binding of atoms to form molecules [15,
16], and contribute to the total binding energy of liquids and solids, with concomi-
tant effect upon their macroscopic properties [17]. In biology, van der Waals forces
are significant in the interaction of molecules within living cells, affecting material
transport through cell membranes [18, 19]. Even on the scale of astrophysics and
cosmology, van der Waals forces are postulated a role in planet formation, assisting
in the creation of dust grains and their growth into planetesimals (after which, grav-
itational forces take over) [20, 21]. It is speculated that dispersion forces may be the
dominant binding influence in asteroids [22].

We have already alluded to the original context of Casimir’s seminal work in this
field. In the DLVO theory of colloid behaviour, comprisingDerjaguin’s and Landau’s

7 For more detailed reviews of van der Waals and Casimir-Polder phenomena, which this section is
especially indebted to, see [25, 48]. Also, Ephraim Shahmoon has recently written a more detailed
introduction to van der Waals and Casimir-Polder phenomena for our new book, Forces of the
Quantum Vacuum: an introduction to Casimir Physics (World Scientific Publishing, to be released
in 2015).
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theory of colloidal dispersions in 1941 [23], and the corroborative results of Verwey
and Overbeek arrived at 7 years later [13], the stability of colloidal suspensions was
accounted for by strong but short-ranged van der Waals attractions countered by
stabilizing electrostatic repulsions. The colloidal particles are subject to both kinds
of forces: the former arising from spontaneous polarisations, and tending to cluster
the particles together; the latter resulting from a sheath of counter-ions accumulated
on the particle surfaces, and tending to repel the particles apart.

1.2.1.1 Eisenschitz and London’s Theory

For interactions over small length scales, van derWaals forces favour an electrostatic
approach. The force is dominated by the Coulomb interaction of the particles and
the system can be modelled by a dipole-dipole interaction Hamiltonian. In this case,
both atoms are unpolarised and all orientations of each dipole are equally likely. By
applying second-order perturbation theory, in which the energy of a system of two
uncoupled ground-state atoms is shifted by the dipole-dipole Hamiltonian, Eisen-
schitz and London were able to show that, whilst the first-order contribution van-
ishes, the second-order term does not [11, 12]. This second-order energy shift was
identified as the London potential [12],

U (r) = − 1

24π2ε20|r1 − r2|6
∑

k,l

|d1
0k |2|d2

0l |2
E1

k − E1
0 + E2

l − E2
0

∝ − 1

r6
, (1.2.1)

where r1 and r2 are the positions of the atoms, r is the distance between them, the sum
is over virtual transitions from the ground states (with energies E1

0 , E2
0) to excited

states l, k (with energies E1
k , E2

l ), and d1
0k,d2

0l are the dipole matrix elements of the
first and second atoms respectively. The potential is attractive and propotional to
1/r6, and may be interpreted as resulting from fluctuations of the charge distribution
that couple directly via the electrostatic Coulomb interaction.

1.2.1.2 Casimir and Polder’s Theory

As Overbeek suspected [13], beyond a certain length scale Eisenschitz and London’s
approach begins to break down. Attempting to fix it on its own terms proved rather
difficult, however. Instead, Casimir and Polder opted to use normal mode quan-
tum electrodynamics (QED) [14]. This involved studying the effects of introducing
into the Hamiltonian an operator for the interaction between a neutral atom and the
radiation field, in recognition of the fact that the fluctuations of the transverse electro-
magnetic field also contribute to the potential. In addition to the Coulomb interaction,
the atoms influence each other indirectly through the field. Using fourth-order pertur-
bation theory the correctional energy shift of introducing the interaction to a system
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Fig. 1.3 The van der Waals force, as conceived in Eisenschitz and London’s theory, is an elec-
trostatic interaction between spontaneously polarised particles, dominated by the Coulomb force
(green arrow). The particles are modelled as dipoles with arbitrary dipole moments (blue arrows)

Fig. 1.4 The van derWaals force, as conceived in Casimir and Polder’s theory. Here, the interacting
objects are modelled as fluctuating quantum particles coupled to the electromagnetic field. The
electrostatic interaction (green arrow) is supplemented by an interaction via the fields (blue arrows)

comprised of uncoupled ground-state atoms, and a field in the vacuum state, lead
to a somewhat more complicated expression for the potential, but one in which the
London result appears as good approximation in the non-retarded limit. However,
for the strongly retarded limit, the van der Waals potential yields [14] (Fig. 1.3)

U (r) ∝ −�cα1α2

π3ε20

1

r7
, (1.2.2)

where α1 and α2 are the polarisabilities of the two atoms. Significantly, this potential
falls off more rapidly with the distance between the atoms than the London potential,
being proportional to 1/r7, as the experimental evidence suggested (Fig. 1.4).

1.2.1.3 Modifications of van der Waals Forces

As intimated earlier, such methods have proven extendible to cases involving finite
temperatures, excited atoms, atoms with magnetic and chiral properties, and atoms
situated in non-trivial environments. van der Waals forces can also be modified
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by the presence of nearby bodies (e.g. plates, spheres, planar cavities). Most of
these scenarios are beyond the concerns of this study. However, for a basic example
of environment-dependence that is of some relevance, we can imagine placing the
interacting components within a medium of permittivity ε. The potential for this case
has been determined: it is modified to [24]

Uε(r) = CF

nε2
U (r), (1.2.3)

whereU (r) is the original potential given by (1.2.2), which is modified by a constant
consisting of the refractive index n = √

ε, a screening effect 1/ε2 that is due to the
polarisation of the medium, and a final factor CF = (3ε/(2ε + 1))4 that is the result
of local field corrections [25].

1.2.1.4 Measuring van der Waals Forces

Accurate measurements of van der Waals forces have been achieved using scattering
experiments. For example, the attenuation of an atomic beam due to van der Waals
forces, as a result of being passed through a stationary gas, has been used to infer a
potential that can be checked against predictions, confirming the 1/r6 non-retarded
behaviour, e.g. [26]. In more sophisticated experiments, two such beams have been
crossed, leading to a scattering of atoms in the region of their intersection, e.g. [27].
The scattered atoms are counted as a function of the scattering angle, and the potential
is then deduced.

1.2.2 Casimir-Polder Forces

A second classification of dispersion forces is the Casimir-Polder force, which arises
between an atom or molecule and a solid body.8 In this case, the two objects of con-
cern are the microscopic particle and the medium of the solid body. The theory of
Casimir-Polder forces has been applied to various phenomena, such as the adsorption
of a single atom or molecule to a surface [28], and fruitfully employed in techno-
logical applications, such as the atomic force microscope [29], whose diagnostic
utility is predicated upon the material-dependent variation of the force between a
probe particle and the surface being probed. Again, there are different theoretical
approaches to this type of problem.

8 This section is especially indebted to the discussion in [25].
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Fig. 1.5 The Casimir-Polder force, as conceived in Lennard and Jones’ theory, is a simple modifi-
cation of an electrostatic van der Waals problem in which the effect of the solid body (grey cuboid)
on the particle (right) is modelled as an image dipole (left) of the same orientation

1.2.2.1 Lennard-Jones’ Theory

In parallel with Eisenschitz and London’s approach to van der Waals problems, the
Lennard-Jones theory of the Casimir-Polder force uses the model of two dipoles,
deriving the force from the electrostatic interaction between them [30]. The effect
of the medium is incorporated by implementing the method of images: the atom’s
fluctuating dipole induces an image dipole behind the surface of the body, which acts
as a second atom. However, in this case the orientation of the two dipoles can no
longer be treated as independent. The average interaction energy is found to be [30]

U (r) = − 1

4πε0

1

12r3
∑

n

|dn|2 ∝ − 1

r3
, (1.2.4)

where {d2
n} are the dipole matrix elements of the single particle, and r is the distance

between the particle and the surface of the body. This average energy is identified as
the Casimir-Polder potential. On Lennard-Jones’ approach, charge fluctuations in the
particle induce charge fluctuations in the medium. This is a longer-range interaction
compared to the van der Waals force, which is not altogether surprising; the mirror
is comprised of many atoms and produces more scattering (Fig. 1.5).

1.2.2.2 Casimir and Polder’s Theory

This result was also generalised by Casimir and Polder using normal mode QED,
incorporating the indirect interaction of the body and the atom through the transverse
electromagnetic field [14]. In this case, as in the case of theCasimir force, the presence



1.2 Dispersion Forces 17

of the body is now registered as a boundary condition: the fluctuating electromagnetic
field is forced to vanish at the surface of the body. The Lennard-Jones potential is
recovered in the non-retarded limit. As the separation between the body and the
particles is increased, however, the potential tends towards

U (r) ∝ − �cα

π2ε0

1

r4
, (1.2.5)

where α is the polarisability of the atom, yielding a force that falls off more rapidly
with the distance between the atom and the body than (1.2.2) (Fig. 1.6).

1.2.2.3 Linear Response Theory

Both these approaches to Casimir-Polder potentials share a severe limitation, in com-
mon with our earlier calculation of the Casimir force: they treat the media involved
as perfectly reflective, perfectly rectilinear boundaries, without reference to their
material constituents.9 However, real media are not homogeneous geometric blocks
that respond uniformly to light at all frequencies. In the following chapter, we will
explore a quantum mechanical theory of light in media (macrosopic QED) that is
capable of addressing these physical facts.

For the moment, let us simply note on passing that a generalisation to bodies
of arbitrary shapes and dielectric properties is possible. Dispersion forces depend
on fluctuations that can be related to linear response functions via the fluctuation-
dissipation theorem [31]. Using linear response theory, the Casimir-Polder potential
can be written succinctly in the form [32–34]

U (r) = �μ0

2π

∞∫

0

dξ ξ2α(iξ)Tr [GS(r, r, iξ)] , (1.2.6)

where GS is the scattering part of a Green function G(r, r′) describing the prop-
agation of an electric field from a dipole source at position r ′ to the point of
measurement r . The fluctuations of the atomic dipole are incorporated in terms of the
atomic polarisability of the atomα; the fluctuations of the field are proportional to the
classical Green function of the electromagnetic field. The Green function incorpo-
rates the specific geometry of the problem, being dependent on a given arrangement
of bodies. The integral (1.2.6) is performed over imaginary frequencies, for reasons
which will become apparent in Chap.2. Both the atomic polarisability α(iξ) and
the Green function of the field GS(r, r, iξ) are rewritten as functions of imaginary
frequency. For the example of an unexcited atom close to a semi-infinite half-space

9 In addition, the media and fields in these models are not treated as a self-consistently coupled
quantum mechanical structure.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
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Fig. 1.6 The Casimir-Polder
force, as conceived in Casimir
and Polder’s theory,
incorporates the interaction
between the particle (right)
with the body via the
electromagnetic fields (blue
arrows). The particle is now
modelled as a fluctuating
quantum atom, and the body
is modelled as a perfect
mirror (the cuboid)

of permittivity ε(ω), which Lennard-Jones considered, the non-retarded potential is
given by [34, 35]:

U (r) = − �

16π2ε0z3

∞∫

0

dξ α(iξ)
ε(iξ) − 1

ε(iξ) + 1
∝ − 1

r3
. (1.2.7)

It is attractive and propotional to 1/r3. Lennard-Jones original result is recovered in
the limit ε → ∞, in which the medium is treated as a perfectly conducting mirror.

1.2.2.4 Measuring Casimir-Polder Forces

Casimir-Polder forces can be measured in a similar way to van der Waals forces by
determining the deflection or attenuation of atomic beams. In this case, however,
the source of the interposition is neither a gas nor a second beam of particles, but
a material body. For example, in a pioneering experiment Raskin and Kusch were
able to confirm the predicted attractive behaviour of the non-retarded Casimir-Polder
force in an arrangement using a cylinder as the deflecting body [36].

However, there are many alternative ways of measuring Casimir-Polder forces
that have been developed. A comparatively recent technique involves the use of opti-
cal traps for confining atoms in an oscillatory motion (for an example, see [37]). The
motion of the oscillation is modified in a measurable way by introducing a surface
sufficiently close to interact with the atoms via the Casimir-Polder force. The change
in the trapping potential is a function of the distance between the surface and the
atoms confined in the trap. Casimir-Polder forces have also been measured in dif-
fraction experiments in which the atomic beam is directed at a diffraction grating
of appropriate width to diffract the matter wave associated with the beam [38].
The material surface presented by the walls of the slit subjects the beam to a



1.2 Dispersion Forces 19

Casimir-Polder force, inducing a phase shift in the matter wave and modifying the
interference pattern.

1.2.3 Casimir-Lifshitz Forces

1.2.3.1 The Casimir and de Boer Forces in Contrast

Casimir’s approach to computing dispersion force between macroscopic bodies was
not the only contender. An alternative microphysical argument had been put for-
ward in 1936 by Hamaker and Boer [39, 40]. By summing the microscopic London
interactions of the atoms (idealised as spherical particles) contained in two bodies
over their respective volumes, a different expression for the ‘Casimir energy’ was
discovered:

U (r) = −
∫

V1

d3r1ρ1

∫

V2

d3r2ρ2
Cvw

r6
(1.2.8)

= −
∫

V1

d3r1

∫

V2

d3r2
Ch

π2r6
, (1.2.9)

where Ch = π2ρ1ρ2Cvw is the Hamaker constant, Cvw is the London van der Waals
constant, and ρ1 and ρ2 denote the number densities of the atoms in the two bodies.
This model lead to Boer’s prediction in 1936 of an attractive pressure-force,

FB = − Ch

12πr3
, (1.2.10)

between two parallel dielectric half-spaces, separated by a distance r . Unlike the
Casimir force, de Boer’s expression varies with the third power of the distance
between the two bodies.

1.2.3.2 Lifshitz Theory

AsBuhmann points out [25], Casimir and de Boer’s approaches to the problem are, in
a sense, exact opposites: de Boer’s force is non-retarded; Casimir’s force is retarded;
de Boer’s force is caused by the fluctuations of material charge; Casimir’s force is
founded on the fluctuations of the electromagnetic field; de Boer’s force is the result
of a simple sum of two-body interactions that is only applicable to weakly dielectric
bodies; Casimir’s force assumes the infinitely strong dielectric properties of a perfect
mirror.
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The two results, in fact, turn out to be limiting cases of a more general apparatus
for calculating dispersion forces between bodies: Lifshitz theory, valid for arbitrary
distances and dielectric properties, recovers both contenders within their respective
limits, offering a stochastic theory of the Casimir Effect that causally unifies the
fluctuating fields between the interacting bodies with the fluctuating materal they
are made of [41–43], introducing a random source of polarisation within the bulk
description of the dielectric that is in accordance with the fluctuation-dissipation
theorem [41]. We will discuss this approach in more detail in the following chapter.

Nevertheless, allowing for its retarded limit, the force predicted by Casimir’s
theory (1.1.23) is an idealisation that is not encountered in nature.10 For instance, it
requires the use of perfect mirrors, which do not exist, and it fails to take into account
the presence of thermal fluctuations or dissipative processes in the materials. Before
the Casimir force could be measured, such factors had to be taken into account, in
some measure. Lifshitz’ result, offering a more general expression for the Casimir
force, has proven an important benchmark for the prediction of dispersion forces in
more realistic cases, enjoying significant experimental verification [44, 45] (Fig. 1.7).

The unification effected by Lifshitz theory is arguably skin-deep, however, occur-
ing at the stochastic and the phenomenological levels via the insertion of suitable
correlation functions to recover the right magnitude of the electromagnetic field on
average. We will return to the subject of the nature of the Casimir force, following a
short but necessary review of macroscopic quantum electrodynamics.11 But first, we
should briefly acknowledge some of the pioneering experiments that have confirmed
the presence of Casimir forces in our world.

1.3 Experimental Evidence

1.3.1 Early Measurements

Casimir’s prediction of an attractive quantum-mechanical force between two parallel
mirrors remained a theoretical curiosity for some time. The first serious attempt to
test Casimir’s prediction in 1948 was led by Marcus Sparnaay 10 years later [3]. His
equipment consisted of two parallel plates, the lower plate mounted on a heavy
pedestal to suppress vibrations, the upper plate suspended on a spring obeying
Hooke’s law. The bottom plate could be moved by a screw system with a preci-
sion of less than 5nm. By bringing it towards the upper plate, the extension of the
spring was measured, demonstrating an increase in force with a decrease in sep-
aration distance. However, the errors in this experiment were enormous (some of
the problems including the surface roughness of the plates, and the difficulty of

10 This isworth emphasising. For instance, Jaffe’s claim that the (idealised)Casimir formula (1.1.23)
has been verified to 1% [49] is somewhat misleading. See Chap.3.
11 Macroscopic quantum electrodynamics is discussed in Chap. 2. For further discussions about the
nature of the Casimir force, see Chap. 3.

http://dx.doi.org/10.1007/978-3-319-09315-4_3
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_3
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Fig. 1.7 The Casimir Effect, as depicted by a Hamaker’s theory: a sum over microscopic dipole-
dipole interactions; b Normal mode QED: a sum over electromagnetic field modes between simple
boundaries; c Lifshitz theory: a stochastic electromagnetic field created by fluctuating polarisations
in a dielectric. In Lifshitz theory, the dielectric functions incorporate something of the microscopic
detail of macroscopic bodies by virtue of their frequency-dependence

maintaining parallelism at the requisite accuracy) and the results could only be said
to be ‘consistent’ with the Casimir effect; they could not unambiguously confirm its
existence.
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Fig. 1.8 A torsion pendulum model. The beam is mounted from a thin wire and is free to rotate
about the pivot. Two attractive surfaces (green) are brought into proximity by adjusting the height
of the piezo-mounted body. The force required to maintain equilibrum is deduced from the voltage
of a capacitance bridge

1.3.2 High Precision Measurements

1.3.2.1 Lamoreaux’s Experiment

It was not until 1978 that clearer experimental evidence for the effect was presented
by van Blokland and Overbeek [4], who circumvented the problem of keeping the
plates parallel by performing the measurement between a metallic plate and a metal-
lic sphere. It is Lamoureaux in 1997, however, who is generally regarded as having
supplied the more decisive evidence [2], inaugurating the era of high precision mea-
surements. Lamoreaux adopted the same sphere-plate configuration of van Blokland
and Overbeek, incorporating a torsional pendulum pivoted and connected to the
plate (see Fig. 1.8). When the lens and plate were brought together to within several
microns, the Casimir force pulled the two objects together, causing the pendulum
to twist. Lamoreaux was able to measure the restoring force necessary to keep the
pendulum angle fixed.

1.3.2.2 Atomic Force Microscopy

Shortly after Lamoreaux’s ground-breaking experiment, a number of Casimir force
measurements were made using variations on the atomic force microscope apparatus
(see Fig. 1.9). In this alternative apparatus, a metal plate mounted on a piezoelectric
translator interacts with a small metal sphere attached to a sensitive cantilever. As
the two bodies are brought into proximity, the bending of the cantilever is detected
by a laser beam reflected off the back of the cantilever, and observed as a change in
the signal of a detector monitoring the difference in light intensity between the top
and bottoms halves of the detector.

Whilst claims to havemeasured theCasimir force by thismethodwith an accurracy
of 1% or better [5] may require cautious evaluation [46], this technique has been
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Fig. 1.9 Atomic force
microscope. A metal plate
mounted on a piezoelectric
translator interacts with a
small metal sphere attached to
a sensitive cantilever, bending
the cantilever and displacing
the reflection of a laser beam.
The deflection of the beam is
measured by a photodiode
detector

fruitfully applied to a number of different manifestations of the Casimir Effect,
including the effects of surface roughness on Casimir forces [47], and even the phe-
nomenon of repulsive Casimir forces [42], which may arise between two objects
when one is optically ‘thinner’ than the intervening medium. (We can regard the
optically thinner medium as effectively acting as a void). In a widely reported exper-
iment carried out byCapasso’s group atHarvard in 2009, a repulsiveCasimir-Lifshitz
force was observed between a silica plate and a polystyrene sphere coated with a
gold film, immersed in a fluid of bromobenzene [44].
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Chapter 2
Macroscopic Quantum Electrodynamics

Photon, photon, shining bright! Diffracting through the lab. at
night. Can even God, with all his might, measure thy position
right?

The author

2.1 Field Quantisation in Vacuum

2.1.1 Quantising the Light Field

We now learn from an early age that light is a form of radiation and a wave
phenomenon that admits a continuum of frequencies. The visible light that the human
eye perceives unaided is but a part of a larger electromagnetic spectrum that includes
high frequency ultra-violet light at one end and low-frequency radiowaves at the
other, involving an interplay of oscillating electric and magnetic fields that is well-
described by Maxwell’s equations. It is also an increasingly familiar thought, since
the early 20th century, that light is in some sense particulate; it deposits its energy
in discrete packets called photons, as postulated by Max Planck in his explanation
of blackbody radiation, and hypostatised by Einstein in his treatement of the photo-
electric effect. In fact, the reveberating dualism between light qua ‘wave’ and light
qua ‘atoms’ has been traced back as far as the philosophers of classical Greece and
the Hindu schools of ancient India.

In the quantum theory of light, first formulated by the British scientist Paul
Dirac, something of a reconciliation of these seemedly incompatible conceptions
is achieved—at least, at a formal level. Dirac proposed a quantisation of the elec-
tromagnetic field, as described by Maxwell’s equations, involving an ensemble of
harmonic oscillators with discrete energy levels. These ‘quanta’ are called photons.
We will briefly propound a simple version of this quantum electrodynamics here.

© Springer International Publishing Switzerland 2015
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2.1.2 Maxwell’s Equations

In the vacuum, the phenomenon of light is characterised by the electric fieldE and the
magnetic inductionB. The classical electrodynamic field obeysMaxwell’s equations,

∇ · B = 0, ∇ × E = −∂B
∂t

, (2.1.1)

∇ · E = 0, ∇ × B = 1

c2
∂E
∂t

, (2.1.2)

with the added constraint that the fields vanish at infinity. A useful representation of
the fields involves the vector potential A,

E = −∂A
∂t

, B = ∇ × A. (2.1.3)

Expressed in this form, the first two ofMaxwell’s equations (2.1.1) are automatically
satisfied. By imposing the Coulomb guage,

∇ · A = 0 (2.1.4)

the third of Maxwell’s equations (2.1.2) is also satisfied. Using the only remaining
non-trivial equation (2.1.2) we can derive the wave equation of light:

∇ × ∇ × A + 1

c2
∂2A
∂t2

= 0. (2.1.5)

In quantumfield theory the classical amplitudesmust be replaced by quantumobserv-
ables. The postulated connection between the classical and the quantum fields is ele-
gantly simple, however: the classical fields are the ensemble averages of the quantum
fields, e.g.

E = 〈ψ |Ê|ψ〉, (2.1.6)

where |ψ〉 is the state vector of the system, and Ê is the ‘operator-valued’ quantum
electric field. From the linearity of quantum mechanics and of Maxwell’s equations,
it follows that the quantum operators Ê and B̂ also obey both Maxwell’s equa-
tions (2.1.1, 2.1.2) and the electromagnetic wave equation (2.1.5). The specifically
quantum-mechanical character of the field operators, however, resides in a funda-
mental commutation relation. It can be shown that [1]

[Ê(r, t), Ê(r′, t)] = [B̂(r, t), B̂(r′, t)] = 0, (2.1.7)

[Ê(r, t), B̂(r′, t)] = i�

ε0
∇ × δT (r − r′), (2.1.8)
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where δT is the transversal delta function. Embedded in this result is a second assump-
tion concerning the Hamiltonian of light, which governs the time evolution of the
field and describes the total energy of the system: the quantum Hamiltonian has the
same structure as the classical energy of the electromagnetic field [2]:

Ĥ = 1

2

∫
(Ê · Ê + B̂ · B̂) dV, (2.1.9)

where the volume integration is over all space.

2.1.3 The Quantum Light Mode

It is useful for our purposes to focus primarily on the vector potential A, which
determines the electromagnetic field (2.1.4), and to expand this quantum operator in
terms of an appropriate set of light modes:

Â(r, t) =
∑

k

(
Ak(r, t)âk + A∗

k(r, t)â†
k

)
. (2.1.10)

In this formalism the modes, which are a set of classical waves {Ak(r, t)} obey-
ing the laws of electromagnetism, are conjoined with quantum amplitude operators
{âk, â†

k }, which are associable with discrete excitations of the field. In the case of nor-
mal modes, the quantum amplitudes behave as creation and annihilation operators,
satisfying Bose commutation relations

[âk, â†
k′ ] = δkk′ , [âk, âk′ ] = 0. (2.1.11)

For convenience, we consider the special case of monochromatic modes1 that oscil-
late at single frequencies,

Ak(r, t) = Ak(r) exp(−iωk t). (2.1.12)

Under this representation, the Hamiltonian (2.1.9) can be rendered very simply:

Ĥ =
∑

k

�ωk

(
â†

k âk + 1

2

)
. (2.1.13)

The total energy of the field is thus the sum of the energies of the modes, where each
mode k carries an energy of �ωk (n + 1/2), and n is the number of photons present
in that mode.

1 Monochromatic modes are stationary modes that conserve energy. We therefore expect the
Hamiltonian to be the sum of the Hamiltonians of the individual modes.
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2.1.4 Zero-Point Energy

The form of the Hamiltonian in Eq. (2.1.13) is ubiquitous in quantum field theory;
it embodies the expression for the energy of a simple quantum harmonic oscillator
with discrete energy levels,

E = �ω (n + 1/2) , n ∈ Z, (2.1.14)

for which even the unexcited state of the system (n = 0) has a non-zero energy of
�ω/2. This is the so-called ‘zero-point energy’ associated with the ground-state of
the field.We see that eachmode of the field is like a distinct oscillator; each represents
a degree of freedom. But we also see that there are an infinite number of them in the
electromagnetic field. It follows that even in the ground state of each mode—ergo,
the absence of any photons in the field—the minimal value of the energy is

E0 =
∑

k

�ωk

2
= ∞. (2.1.15)

It seems obvious that infinities of this sort are unfortunate artifacts. It is not so obvious
how to ‘fix’ quantum field theory to prevent it from producing them. Still, as we have
seen in Chap.1, the zero point energy leads to experimentally confirmed results. One
of these results is the Casimir force (1.1.23).

2.1.5 External Boundaries on a Quantum Field

As it stands, however, Eq. (2.1.15) fails to be physically meaningful on at least two
counts: it is both infinite and without empirical reference. There is no reason to think
that infinite plane waves exist in nature. One way to register these constraints is
through the imposition of ‘external’ boundary conditions, in which the field strength
and its derivatives are fixed at certain locations. In our calculation in Chap. 1, we
required that the transversal components of the electric field and the normal compo-
nent of the magnetic field should vanish at the locations of the mirrors. The frequen-
cies ωk , in this case, refer to a set of standing waves associated with the cavity, and
with an energy that varies with the size of the cavity. This energy is finite, consequent
upon an appropriate regularisation in which we effectively acknowledge that such a
cavity cannot support an infinite number of frequencies.2

However, this method of representing the presence of material bodies within the
system is acutely limited: real materials are dispersive, responding differently to
different frequencies; they are dissipative, transforming electromagnetic energy into
currents; and their presence is felt over spatially extended regions. Moreover, elec-
tromagnetic fields are present within material bodies, as well as the vacuum, where

2 See Sect. 1.1.2.

http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
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Casimir forces are also to be expected. To facilitate a more sophisicated approach to
the interaction of light with materials, we must learn to quantise the electromagnetic
field in media.

2.2 Field Quantisation in Media

Our concern is with material bodies interacting with each other through the quantum
electrodynamic field. Since such bodies involve large numbers of bound, charged
particles, a microscopic description of their interaction is impractical, and we must
instead consider the effective influence of these particles on the electromagnetic field.
Contrary to conventional wisdom, a canonical quantisation of the electromagnetic
field in the presence of media can in fact be performed [3, 4]. However, the process
is somewhat involved, and the problems we wish to discuss formally do not depend
upon the details. We will content ourselves, then, with a more phenomenological
approach,3 for the purpose of recovering the critical results we require with minimal
effort and familiarising the reader with some essential ideas.

2.2.1 The Macroscopic Maxwell Equations

In differential form, using SI units, the classical electrodynamic field obeys the
macroscopic Maxwell equations

∇ · B = 0, ∇ × E = −∂B
∂t

, (2.2.1)

∇ · D = 0, ∇ × H = 1

c2
∂D
∂t

, (2.2.2)

where the fields D and H are effective electric and magnetic fields respectively,
associated with the polarisation and magnetisation of the media. We do not concern
ourselves with external free charges, in the Casimir Effect. However, in extending
quantum electrodynamics from light in empty space to light in media, we must lay
down a set of constitutive equations coupling the fields Ê to D̂ and Ĥ to B̂. In the
linear response regime

D = ε0εE, B = μ0μH, ε0μ0 = 1/c2, (2.2.3)

3 The basic approach adopted in this section is developed in detail in [8–10]. However, we will not
use the Lorentz force expression, which does not recover the standard results for forces in media,
but an analogue of the Minkowski stress tensor. Pitaevskii’s comments here are relevant [13, 14].
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where (ε0) ε is the permittivity of (free) space and (μ0)μ is the permeability of (free)
space. For inhomogeneous media, ε and μ will vary in space. In the quantisation
of the light field, all classical fields must be replaced by operator-valued quantum
observables. It is convenient to introduce frequency components of the form

f̂ =
∞∫

0

dω f̂(ω) + H.c, (2.2.4)

for some quantum operator f̂ , where H.c. denotes the Hermitian conjugate of the
preceding term. The quantised Maxwell equations can now be written:

∇ · B̂ = 0, ∇ × Ê − iωB̂ = 0. (2.2.5)

∇ · D̂ = 0, ∇ × Ĥ + iωD̂ = 0. (2.2.6)

2.2.2 Quantum Noise

The Heisenberg uncertainty principle entails the presence of quantum fluctuations
that must be felt by the properties of the medium. At this level of description, without
invoking the additional apparatus involved in the canonical theory ofmacro-QED [4],
we must follow Lifshitz’ somewhat ad hoc procedure [5] of introducing noise polar-
isation and magnetisation terms into the descriptions of the fields:

D̂ = ε0εÊ + P̂N , (2.2.7)

Ĥ = 1

μ0μ
B̂ − M̂N . (2.2.8)

Situated in the effective fields associated with the media, these sources generate
internal noise currents and noise charge densities within the material:

ĴN = −iωP̂N + ∇ × M̂N , (2.2.9)

ρ̂N = −∇ · P̂N . (2.2.10)

These source fields satisfy the continuity equation

− iωρ̂N + ∇ · ĴN = 0. (2.2.11)

In Lifshitz theory, the electromagnetic fields remain formally unquantised and clas-
sical, with the behavior of the noise fields being governed by the results of Rytov
theory [6] to produce the appropriate stochastic behaviour [7]. Here, we will follow
the more conspicuously quantum-mechanical approach developed in [8–10].



2.2 Field Quantisation in Media 31

2.2.3 Bosonic Field Operators

Cast in the form of quantum operators, our noise fields must be made to satisfy
quantum commutation relations. We choose to adopt relations such that the fluctua-
tion spectrum obeys the fluctuation-dissipation theorem [11], entailing (among other
things) that the noise should vanish on average. This can be achieved by appropri-
ately relating the polarisation and magnetisation to bosonic creation and annihilation
operators f̂†λ(r, ω) and f̂λ(r, ω) for the electric andmagnetic contributions to the field
λ ∈ {e, m},

P̂N (r, ω) = i

√
�ε0

π
Im ε(r, ω) f̂e(r, ω), (2.2.12)

M̂N (r, ω) = i

√
�

πμ0

Imμ(r, ω)

|μ(r, ω)|2 f̂m(r, ω), (2.2.13)

which themselves obey bosonic commutation relations:

[
f̂λ(r, ω), f̂λ′(r′, ω′)

]
=
[
f̂†λ(r, ω), f̂†

λ′(r′, ω′)
]

= 0, (2.2.14)
[
f̂λ(r, ω), f̂†

λ′(r′, ω′)
]

= δλλ′δ(r − r′)δ(ω − ω′). (2.2.15)

In fact, these operators will serve to describe the collective, polariton-like, bosonic
excitations of the body-field system, for which we may define a system ground-state:

f̂λ(r, ω) |{0}〉 = 0 ∀λ, r, ω. (2.2.16)

When the system is in its ground state, the electromagnetic field is likewise (‘the
quantumvacuum’).A completeHilbert-space spanned byFock states can be obtained
in the usual way by repeated application of creation operators f̂†λ(r, ω) to the ground
state:

∣∣{nλ1(r1, ω1), nλ2(r2, ω2), ..., }
〉 =

∏

k, nλk

1√
nλk (rk, ωk)!

f̂†λk
(rk, ωk) |{0}〉 .

(2.2.17)

2.2.4 Field Fluctuations

For a system prepared in a state |φ〉, where |φ〉 is represented as a vector of a Hilbert
space, the quantum average of an observable q̂ is given by

〈
q̂
〉 = 〈φ| q̂ |φ〉 . (2.2.18)
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The fluctuations associated with a quantum operator are

〈(
�q̂

)2〉 =
〈
q̂2
〉
− 〈

q̂
〉2

. (2.2.19)

As noted, these fluctuations necessarily occur for two non-commuting operators as
a direct consequence of the Heisenberg uncertainty principle:

〈(
� f̂

)2 (
�ĝ

)2
〉

≥ 1

4

∣∣∣
〈[

f̂ , ĝ
]〉∣∣∣

2
. (2.2.20)

Our field operators f̂ clearly have a vanishing ground-state average:

〈{0}| f̂λ(r, ω)) |{0}〉 = 0,

〈{0}| f̂†λ(r, ω)) |{0}〉 = 0.
(2.2.21)

It follows that the noise polarisation and magnetisation operators, defined in Eqs.
(2.2.12) and (2.2.13), consequently have zero-averages as well:

〈
P̂N (r, ω)

〉
= 0,

〈
M̂N (r, ω)

〉
= 0.

(2.2.22)

For paired field operators, we obtain the following results:

〈
f̂λ(r, ω)f̂λ′(r′, ω′)

〉
= 0,

〈
f̂λ(r, ω)f̂†

λ′(r′, ω′)
〉
= δλλ′δ(r − r′)δ(ω − ω′),

〈
f̂†λ(r, ω)f̂λ′(r′, ω′)

〉
= 0,

〈
f̂†λ(r, ω)f̂†

λ′(r′, ω′)
〉
= 0.

(2.2.23)

From these, it follows that the noise polarisation and magnetisation have non-zero
fluctuations, leading to the expressions [10]

〈
S
[
�P̂N (r, ω)�P̂†

N (r′, ω′)
]〉

= �

2π
ε0Imχ(r, ω)δ(r − r′)δ(ω − ω′), (2.2.24)

〈
S
[
�M̂N (r, ω)�M̂†

N (r′, ω′)
]〉

= �

2π

Im ζ(r, ω)

μ0
δ(r − r′)δ(ω − ω′), (2.2.25)

where the electric susceptibility χ(r, ω) is related to the electric permittivity via
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ε(r, ω) = 1 + χ(r, ω), (2.2.26)

the magnetic susceptibility ζ(r, ω) is related to the magnetic permeability via

μ(r, ω) = 1

1 − ζ(r, ω)
, (2.2.27)

and S denotes a symmetrised operator product

S
[
âb̂
]

= 1

2

(
âb̂ + b̂â

)
. (2.2.28)

This result concurs with the fluctuation-dissipation theorem [11], which relates the
fluctuations of a quantity with the rate of absorption of energy by the system when
an external force is applied. In fact, we intentionally defined (2.2.12) and (2.2.13) in
order for them to do so. This is the same spectrum recovered by Rytov theory, and
its application to the electromagnetic field lies at the heart of the Lifshitz calculation
of the Casimir force.

2.2.5 The Fundamental Fields

It is now possible to express the other fields in terms of the fundamental field opera-
tors. Of course, we achieve this by solvingMaxwell’s equations. Noting that the noise
operators we have introduced have effectively created internal currents (2.2.9) and
charges (2.2.10) in the system, we can use the inhomogeneous Helmholtz equation
for the electric field [

∇ × 1

μ
∇ × −ω2

c2
ε

]
Ê = iμ0ωĵN . (2.2.29)

This equation is formally solveable by means of a classical Green tensor character-
ising the linear response of the field to the current sources:

Ê(r, ω) = iμ0ω

∫
d3r ′ G(r, r′, ω) · ĵN (r′, ω). (2.2.30)

The noise current (2.2.9) was earlier expressed in terms of the noise polarisation
(2.2.12) and magnetisation (2.2.13), and these have been rewritten in terms of the
fundamental field operators f̂e(r, ω) and f̂m(r, ω). With reference to Eqs. (2.2.9),
(2.2.12) and (2.2.13), an expression for the field can be straightforwardly written as

Ê(r) =
∞∫

0

dω
∑

λ=e,m

∫
d3r ′ Gλ(r, r′, ω) · f̂λ(r′, ω) + H.c, (2.2.31)



34 2 Macroscopic Quantum Electrodynamics

where

Ge(r, r′, ω) = i
ω2

c2

(
�

πε0
Im ε(r′, ω)

)1/2

G(r, r′, ω), (2.2.32)

Gm(r, r′, ω) = i
ω

c

(
�

πε0

Imμ(r′, ω)

|μ(r, ω)|2
)1/2 [∇ × G(r, r′, ω)

]T
. (2.2.33)

The other fields may also be expressed similarly. Using Eq. (2.2.31) and theMaxwell
equation (2.2.5), we obtain

B̂(r) =
∞∫

0

dω

iω

∑

λ=e,m

∫
d3r ′ ∇ × Gλ(r, r′, ω) · f̂λ(r′, ω) + H.c. (2.2.34)

From (2.2.7) and (2.2.12), conjoined with (2.2.31) we obtain

D̂(r) =
∞∫

0

dω

⎡

⎣ε0ε(r, ω)
∑

λ=e,m

∫
d3r ′Gλ(r, r′) · fλ(r′, ω)

+ i

(
�ε0

π
Im ε(r, ω)

)1/2

fe(r, ω)

]
+ H.c. (2.2.35)

And from (2.2.8) and (2.2.13), conjoined with (2.2.34) we obtain

H(r) =
∞∫

0

dω

[
1

iωμ0μ(r, ω)

∑

e,m

∫
d3r ′∇ × Gλ(r, r ω) · fλ(r′, ω)

−
(

�κ0

π

Imμ(r, ω)

μ(r, ω)

)1/2

fm(r, ω)

]
+ H.c. (2.2.36)

With a little further work [8], we can recover the commutation relations

[
E(r), E(r′)

] = [
B(r), B(r′)

] = 0, (2.2.37)
[
E(r), B(r′)

] = i�

ε0
∇ × δ(r − r′), (2.2.38)

which agree with those in free-space (2.1.8), and deduce the ground-state fluctuation
spectrum of the field [10]

〈
S
[
�Ê(r, ω)�Ê†(r′, ω′)

]〉
= �

2π
ω2μ0ImG(r, r′ ω)δ(ω − ω′), (2.2.39)

which is in accordance with the fluctuation-dissipation theorem [11].
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2.2.6 The Hamiltonian

The Hamiltonian governs the dynamics of a system. Since the electromagnetic field
operators we introduced are linear combinations of the fundamental field operators,
our Hamiltonian must therefore generate the correct time-dependence of the field
operators, so that Maxwell’s equations and the constitutive equations hold. This
behaviour is implemented using the Hamiltonian

Ĥ =
∑

λ=e,m

∫
d3r

∞∫

0

dω �ω f̂†λ(r, ω) · fλ(r, ω). (2.2.40)

From the Heisenberg equation of motion, we find

d

dt
f̂λ = 1

i�

[
f̂λ(r, ω), Ĥ

]
= −iωf̂λ(r, ω). (2.2.41)

This differential equation is solved by

f̂λ(r, ω, t) = f̂λ(r, ω)e−iωt . (2.2.42)

This gives the correct behaviour for recovering the Maxwell equations: the time-
dependent frequency components of the electromagnetic fields are ordinary Fourier
components. The ground state defined earlier is clearly an eigenstate of this
Hamiltonian,

Ĥ |{0}〉 = 0. (2.2.43)

Using the bosonic commutation relations (2.2.15), we find that

Ĥ |nλ(r, ω)〉 = �ω nλ(r, ω) |nλ(r, ω)〉 , (2.2.44)

and more generally that

Ĥ
∣∣nλ1(r1, ω1), nλ2(r2, ω2), . . .

〉

= �
(
nλ1ω1 + nλ2ω2 + . . .

) ∣∣nλ1(r1, ω1), nλ2(r2, ω2), . . .
〉
, (2.2.45)

so a multi-mode quantum Fock state is an energy eigenstate, where the energy is the
sum of the energies associated with each individual excitation.

2.2.7 Photons and Polaritons

Significantly, the quantum of the interacting system of dielectric material and
electromagnetic fields is no longer that of the photon; the Hamiltonian has been
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cast in the form of a summation over field operators in which the material and
electromagnetic components of the system have been mixed. This is a kind of
polariton, and the quantisation of the coupled system in terms of polaritons has
implications for how we understand the nature of the Casimir force. This question
will be explored further in Chap. 3. At this point, we will content ourselves simply
with observing that the Hamiltonian of (2.1.9) can be related to the Hamiltonian
of (2.2.40) as the limiting case in which the refractive index of the material (or its
resistance to the field, if you will) is so high that only a negligible fraction of the
radiation can be absorbed. In such idealised cases, the polariton is almost entirely
‘photonic’.

2.3 The Casimir Force Density

2.3.1 The Stress Tensor

Aswe have seen, the ground-state of the coupled system of electromagnetic field and
dielectric is one with non-zero current density within the medium, consistent with
the fluctuation-dissipation theorem. The Casimir force arises from the interaction
of these currents. In Lifshitz’ original theory, the force was obtained by averaging
Maxwell’s stress tensor in a vacuumwith respect to electromagnetic fluctuations [5],

σF = (E ⊗ E) + (B ⊗ B) − 1

2
(E · E + B · B) 13, (2.3.1)

which governs the flow of momentum associated with the electromagnetic field.4 In
the extension of Lifshitz theory to the general case of Casimir forces between bodies
embedded in media [12], the Casimir (or ‘Casimir-Lifshitz’) forces in a system are
ultimately determined by an analogue of the Minkowski stress tensor

σM = (D ⊗ E) + (B ⊗ H) − 1

2
(D · E + B · H) 13, (2.3.2)

which concerns the momentum associated with the body-assisted field, reducing to
the Maxwell stress tensor in the vacuum. Here we will derive a general expression
for the Casimir stress tensor in an inhomogeneous medium, relating the Minkoswki
stress tensor to the Casimir force density. The derived expression also applies to
piece-wise homogeneous systems and an infinite homogeneous medium as special
cases. The subject of theCasimir stress tensor has been amatter of some controversy.5

However, we offer here a fresh and simple argument that coincides with the results

4 See Appendix B and [21].
5 The accepted use of the ‘Minkowski-like’ stress tensor for computingCasimir forces in the Lifshitz
theory [22] was challenged in [23], resulting in some debate [13, 24, 25]. A new argument for the

http://dx.doi.org/10.1007/978-3-319-09315-4_3
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of Lifshitz theory6; the standard predictions may be recovered after quantising the
designated stress tensor at the end of what is essentially a classical demonstration.

It must be emphasised from the outset that this is intended more as an illustrative
argument than a ‘water-tight’ proof. Once the effects of temperature are considered
and absorption is included, the derivation becomes substantially more involved, but
the final result for the stress tensor is the same [3, 12].

2.3.1.1 Prior Conditions on the Stress Tensor

The stress tensor describing the momentum flow for an object embedded in a fluid
mediumexperiencing thefluctuations of the electromagnetic fieldmust satisfy certain
properties, as discussed at length by Pitaevskii [13, 14]. It must incorporate both the
electromagnetic and fluid-mechanical aspects of the problem, and be decomposable
into the form

σ = −P0(ρ)13 + σE , (2.3.3)

where P0 is defined as the pressure of a uniform infinite liquid of density ρ in the
absence of electromagnetic fluctuations, and σE is the contribution to the stress in
the system arising specifically from the fluctuations of the field. For our purposes,
temperature is not a variable; whilst the purely quantum-mechanical Casimir force
requires thermodynamic equilibrium, it occurs at zero temperature. In addition, we
require that the stress tensor must be symmetric: σ = σ T .

The physical picture is this: electromagnetic fluctuations in the fluid exert a radi-
ation pressure on the molecules that compose it. Mechanical equilibrium is ensured,
however, by the presence of a counteracting pressure term in the stress tensor (2.3.3)
preventing a permanent flow in the liquid (which would lead to a perpetuum mobile).
The total stress tensor must therefore be derived in the circumstances of both ther-
modynamic and mechanical equilibrium, and consequently we require that

∇ · σ = 0. (2.3.4)

2.3.1.2 The Pressure Force

We consider a small deformation at the surface of a body with a displacement vector
field δr(r). The change in the free energy is

δF = −
∫

dV f · δr, (2.3.5)

(Footnote 5 continued)
disputed result can be found in [3], where the Casimir stress was derived in the context of the
canonical theory of macroscopic quantum electrodynamics [4].
6 Lifshitz theory, in this case, refers to the more general results obtained in [12].
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where f is the force per unit volume on the body during the deformation. From the
continuity equation of fluid dynamics, we infer that

δρ + ∇ · (ρδr) = 0 =⇒ δρ = −∇ · (ρ δr) . (2.3.6)

The variation of the permittivity ε is related to the material deformation via

δε = ∂ε

∂ρ
δρ = −∂ε

∂ρ
∇ · (ρ δr) . (2.3.7)

Expanding the divergence, and observing that

∂ε

∂ρ
δr · ∇ρ = ∇ε · δr, (2.3.8)

we obtain

δε = −δr · ∇ε − ρ
∂ε

∂ρ
∇ · δr, (2.3.9)

where ε = ε (ρ) and ρ = ρ (r). The variation of the permeability μ is governed
similarly. The energy associated with the electromagnetic field in media is of the
form [2]

E f = 1

2

∫ (
ε E2 + 1

μ
B2
)

dV . (2.3.10)

We postulate that the variation in the free energy7 is of the form [15]

δF = δF0 − 1

2

∫ (
δε E2 + δ

(
μ−1

)
B2
)
dV . (2.3.11)

Inserting (2.3.9) and its analogue for μ into (2.3.11), we obtain

δF = δF0 + 1

2

∫ [
(∇ε) E2 +

(
∇ 1

μ

)
B2
]

· δr dV

+ 1

2

∫ (
E2ρ

∂ε

∂ρ
∇ · δr + B2ρ

∂

∂ρ

(
1

μ

)
∇ · δr

)
dV . (2.3.12)

Using integration by parts, we find that

7 This result is not valid when there is absorption. Note that the expression for the variation of the
free energy in Lifshitz theory takes a similar form [12]:

δF = δF0 − T

4π

∞∑

n=0

∫
Dii (r, r, ξn)δε(r, iξn)d3r.
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∫ [
E2

(
ρ

∂ε

∂ρ
∇ · δr

)]
dV =

∫

∂V
E2

(
ρ

∂ε

∂ρ
δr
)

dA −
∫

∇
[

E2
(

ρ
∂ε

∂ρ

)]
· δr dV .

(2.3.13)

For a sufficiently large volume, the field terms vanish on the surface. We deduce that
∫ [

E2
(

ρ
∂ε

∂ρ
∇ · δr

)]
dV = −

∫
∇
[

E2
(

ρ
∂ε

∂ρ

)]
· δr dV . (2.3.14)

The terms in μ may be treated similarly. Hence Eq. (2.3.12) may be recast in the
form

δF = δF0 + 1

2

∫
dV

{
(∇ε) E2 +

(
∇ 1

μ

)
B2

−∇
[

E2
(

ρ
∂ε

∂ρ

)]
− ∇

[
B2

(
ρ

∂

∂ρ

1

μ

)]}
· δr. (2.3.15)

The free energy is clearly associated, via Eq. (2.3.5), with a force of the form

f = −∇ P0 − 1

2
(∇ε) E2 − 1

2

(
∇ 1

μ

)
B2 + 1

2
∇
[

E2
(

ρ
∂ε

∂ρ

)
+ B2

(
ρ

∂

∂ρ

1

μ

)]
,

(2.3.16)

acting per unit volume of the body. We consider the case of mechanical equilibrium,
in which the forces on the body are balanced, i.e.

f = 0 =⇒ fP + fE = 0, (2.3.17)

where we decompose the force into two contributions:

fP = −∇ P0 + 1

2
∇
[

E2
(

ρ
∂ε

∂ρ

)
+ B2

(
ρ

∂

∂ρ

1

μ

)]
,

fE = −1

2

[
(∇ε) E2 + ∇

(
μ−1

)
B2
]
. (2.3.18)

It will become clear that these balancing contributions can be assigned distinct phys-
ical meanings.8 Our expression for the total force (2.3.17) may be recast in the form
of a stress tensor σ satisfying

f = ∇ · σ = 0. (2.3.19)

8 We note that the first contribution fP contains a pressure term which is present in the absence
of electromagnetic fluctuations, and a contribution due to the deformation of the medium which
vanishes in the limit of an incompressible medium.
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It follows that the complete stress tensor takes the form

σ = −P013 + 1

2

{
E2

(
ρ

∂ε

∂ρ

)
+ B2

(
ρ

∂

∂ρ

1

μ

)}
13

− 1

2

{∫
∇ε(r)E2(r) · dr +

∫
∇
(

1

μ (r)

)
B2(r) · dr

}
13, (2.3.20)

which we similarly decompose into two contributions

σ = σP + σE , (2.3.21)

where

σP = −P013 + 1

2

{
E2

(
ρ

∂ε

∂ρ

)
+ B2

(
ρ

∂

∂ρ

1

μ

)}
13, (2.3.22)

σE = −1

2

{∫
∇ε(r)E2(r) · dr +

∫
∇
(

1

μ (r)

)
B2(r) · dr

}
13. (2.3.23)

The two force densities may be defined with respect to the stress components:

fP = ∇ · σP , fE = ∇ · σE . (2.3.24)

2.3.1.3 The Minkowski Contribution

The term we have labelled σE can be related to the Minkowski stress tensor via
Maxwell’s equations, in the absence of external charges and under the condition of
equilibrium. We begin with the general form of the classical Maxwell equations:

∇ · B = 0, ∇ × E = −∂B
∂t

, ∇ · D = ρ, ∇ × H = ∂D
∂t

+ J. (2.3.25)

From the first equation, it follows that

∇ (B ⊗ H) = H (∇ · B) + (B · ∇) H = (B · ∇) H. (2.3.26)

From the third, we deduce

∇ (D ⊗ E) = E (∇ · D) + (D · ∇) E = ρE + (D · ∇) E. (2.3.27)

Combining (2.3.26) and (2.3.27), we obtain

∇ (D ⊗ E) + ∇ (B ⊗ H) = ρE + (D · ∇) E + (B · ∇) H. (2.3.28)
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From the second and fourth equations, we find

∂

∂t
(D × B) = (∇ × E) × D + (∇ × H) × B − J × B. (2.3.29)

It follows from (2.3.28) and (2.3.29) that

FL + ∂

∂t
(D × B) = T, (2.3.30)

whereFL is the Lorentz force that acts on external charges and currents in the system,

FL = ρE + J × B, (2.3.31)

and T can be decomposed into the sum of two terms:

T1 = (∇ × E) × D − (D · ∇) E + (∇ × H) × B − (B · ∇) H, (2.3.32)

T2 = ∇ (D ⊗ E) + ∇ (B ⊗ H) . (2.3.33)

Both sides of Eq. (2.3.30) must have units of force density. However, in macroscopic
electromagnetismapplied solely to dielectrics (includingmetals) there are no external
currents or charges: ρ = 0 and J = 0. It follows that the Lorentz force is identically
zero:

FL = 0. (2.3.34)

Whilst a microscopic Lorentz force could be defined with respect to the internal
source terms introduced in the Lifshitz theory, these terms are not the referents of
(2.3.25), and this approach does not recover the accepted expression for the forces
in media [13, 14]. Also, we will restrict ourselves to considering equilibrium states,
so the time derivative does not contribute either. Under these conditions, Eq. (2.3.30)
becomes simply

T = T1 + T2 = 0. (2.3.35)

In the argument that follows, we recall the vector identity

∇ (a · b) = (a.∇) b + (b · ∇) a + a × (∇ × b) + b × (∇ × a), (2.3.36)

and note that the constitutive relations are given by

D(r, ω) = ε (r, ω) E(r, ω), H(r, ω) = 1

μ (r, ω)
B(r, ω), (2.3.37)

where we have chosen to absorb the constants ε0 and μ0 into the definitions of the
respective fields. Under these conditions, and for a fixed frequency ω,
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(∇ × D(r)) × E(r) = (∇ × ε(r)E(r)) × E(r)

= ∇ε(r) (E(r) × E(r)) + ε(r) (∇ × E(r)) × E(r). (2.3.38)

Clearly, the first term, involving the cross product of E with itself, is identically zero.
Evaluated at a fixed point r0,

[(∇ × D(r)) × E(r)]r0 = ε(r0) [∇ × E(r)]r0 × E(r0)

= [∇ × E(r)]r0 × ε(r0)E(r0). (2.3.39)

Hence we may write

[(∇ × D(r)) × E(r)]r0 = [(∇ × E (r)) × D(r)]r0 , (2.3.40)

in which the field terms have been exchanged, noting that

D(r) = ε(r)E(r). (2.3.41)

We may perform the same trick for the magnetic fields:

[(∇ × H(r)) × B(r)]r0 = [(∇ × B (r)) × H(r)]r0 , (2.3.42)

noting that

H(r) = 1

μ(r)
B(r). (2.3.43)

In addition, we find that

(E(r) · ∇) D(r) = E(r) · ∇ (ε(r)E(r))

= ε(r) (E(r) · ∇) E(r) + ∇ε(r) (E(r) · E(r)) . (2.3.44)

Evaluated at a point r0 :

[(E(r) · ∇) D]r0 =
[
(D(r) · ∇) E(r) + ∇ε(r)E2(r)

]

r=r0
. (2.3.45)

We note this time that, in exchanging the order of the fields, we acquire an additional
term that depends upon the gradient of the permittivity. Similarly, we find

[(B(r) · ∇) H]r0 =
[
(H(r) · ∇) B(r) + ∇

(
1

μ(r)

)
B2(r)

]

r=r0

, (2.3.46)

where we have again acquired an additional term that depends upon the gradient of
the permeability. Using Eq. (2.3.40) and (2.3.45) and the vector identity (2.3.36), the
first term of T1, evaluated at r0, can be rewritten
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(∇ × E) × D = (D · ∇) E − 1

2
∇ (D · E) + 1

2
∇ [ε(r)] E2(r). (2.3.47)

Similarly, for the third term, using Eqs. (2.3.35), (2.3.42) and (2.3.46), we obtain

(∇ × H) × B = (B.∇) H − 1

2
∇ (B · H) + 1

2
∇
[

1

μ(r)

]
B2(r). (2.3.48)

Reexpressing (2.3.33) using (2.3.42–2.3.48), it follows from (2.3.35) that

∇ · σM = −1

2

(
∇ [ε(r)] E2(r) + ∇

[
μ(r)−1

]
B2(r)

)
, (2.3.49)

where σM defines the familiar Minkowski stress tensor for the electromagnetic field

σM = (D ⊗ E) + (B ⊗ H) − 1

2
(D · E + B · H) 13. (2.3.50)

In fact, expression (2.3.49) is equal to fE , defined in Eq. (2.3.18). It follows from the
right-hand side of (2.3.49) that, in an equilibrium state, in the absence of external
currents or charges, σM may be alternatively cast in the form

σM = −1

2

{∫
∇ε(r)E2(r) · dr +

∫
∇
(

1

μ (r)

)
B2(r) · dr

}
13. (2.3.51)

2.3.1.4 The Abraham Stress Tensor

Exchanging σE for σM in the stress tensor (2.3.21), and rewriting σM in the form

σM = (D ⊗ E) + (B ⊗ H) − 1

2

(
εE2 + 1

μ
B2
)

13, (2.3.52)

we recover the celebrated Abraham tensor of the stationary electromagnetic field in
a dielectric fluid:

σ = −P013 + (D ⊗ E) + (B ⊗ H) − 1

2

{
E2

(
ε − ρ

∂ε

∂ρ

)
+ B2

(
1

μ
− ρ

∂

∂ρ

1

μ

)}
13.

(2.3.53)

This is the total stress tensor applied in the general form of Lifshitz theory [12] for
the prediction of Casimir phenomena in media.
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2.3.1.5 The Casimir-Lifshitz Force and the Fluid Pressure

The Casimir-Lifshitz force in a liquid medium may be understood as arising in the
equilibrium balance between the radiation pressure and fluid pressure components
of the stress tensor. Its stress tensor is given by the quantum analogue of

σM = (D ⊗ E) + (B ⊗ H) − 1

2
(D · E + B · H) 13, (2.3.54)

which may be associated with an electromagnetic force density

fC = fM = ∇ · σM . (2.3.55)

It may alternatively be expressed in the form

fC = fE = ∇ · σE ≡ −1

2

(
∇ [ε(r)] E2(r) + ∇

[
μ(r)−1

]
B2(r)

)
, (2.3.56)

where it is specified in terms of the gradients of the dielectric functions. It is exactly
opposed by a compensating stress containing the pressure gradient due to the fields,

σ P =
{
−P0 + 1

2

(
ρ

∂ε

∂ρ
E2 + ρ

∂

∂ρ

(
1

μ

)
B2
)}

13. (2.3.57)

Consequently,

∇ · σ = ∇ · σM + ∇ · σP = fC + fP = 0, (2.3.58)

and mechanical equilibrium is maintained. The Casimir force density may thus be
inferred either from the quantum analogues of the pressure or Minkoswki contribu-
tions to the stress:

fC = −fP . (2.3.59)

The total pressure in the fluid (a scalar quantity) includes the contribution P0 defined
in the absence of electromagnetic fluctuations.

2.3.1.6 The Casimir Force on Interacting Bodies in a Medium

The Casimir-Lifshitz force is the quantum analogue of the force determined by the
volume integral of the force density, which is equivalent to the integration of the
Minkowski stress over an enclosing surface:

FC =
∫

V

dr ∇ · σM =
∫

∂V

dA · σM . (2.3.60)
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From Eq. (2.3.56), we observe that ∇ · σM = 0 and hence FC = 0 for any surface
enclosing a volume of uniform fluid. However, for any surface surrounding a solid
body, the gradients of the dielectric functions are non-zero, and integration over the
opposing electromagnetic or pressure components of the stress produces the force
acting on the body.

2.3.1.7 Piece-wise Homogeneous Case

Let us consider now a piece-wise planar homogeneous case with a boundary at
x = x0, as a special case of an inhomogeneous system. In fact, most theoretical
Casimir problems are concerned with the interactions between homogeneous bodies;
consequently, their global dielectric functions are piece-wise homogeneous. The
constitutive relations are as stated earlier, but here ε is sharply discontinuous at the
boundary:

ε (x) =
{

ε1 x < x0
ε2 x ≥ x0

. (2.3.61)

The permittivity ε(x) can be rewritten in terms of the Heaviside function H :

ε(x) = ε1 + H(x − x0)�ε, (2.3.62)

where �ε = ε2 − ε1. The magnetic response of a material can often be ignored
(μ → 1). Consider Eq. (2.3.56). For the piece-wise homogeneous system of our
example, the first term involves

∂

∂x
[ε(x)] E2(r) = δ(x − x0)�ε E2(r). (2.3.63)

The second term also gives a non-zero contribution only at x = x0, i.e. on the
boundary. For piece-wise homogeneous media, then, the stress is discontinuous at
the interface between two different media, and the force-density is concentrated in a
delta-function (in this case, at x = x0):

∇ · σM = −1

2
δ(x − x0)

[
�ε E2(r)

]
. (2.3.64)

Notice that inside an infinite homogeneous medium, where the gradients of the
dielectric functions are zero, Eq. (2.3.56) implies that the Casimir force must be
identically zero.
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2.3.1.8 General Remarks

We find then that the force density can be written solely in terms containing spatial
derivatives of the dielectric functions, for both piecewise homogeneous systems and
inhomogeneous media. Rewritten as a quantum correlation function, averaged over
the vacuum state, σM ultimately affords the Casimir force density for a system,
including Casimir’s original case involving a cavity formed by two perfect mirrors.
The Casimir force therefore depends upon material inhomogeneities in a system that
scatter the (virtual) photons of the electromagnetic field, and it is this scattered part
of the field that is relevant to computing the Casimir stresses in a system. This is a
thought we will repeatedly come back to.

2.3.2 Averaging over the Quantum Stress Tensor

We have established that the Casimir force density is equal to the divergence of
the Minkowski stress tensor. Of course, this tensor must first be quantised. The
work has essentially been done, however: it is sufficient to replace the classical field
components of the stress tensor with the quantum operators we have defined in this
chapter:

σ̂ = Ê ⊗ D̂ + B̂ ⊗ Ĥ − 1

2

(
Ê · D̂ + B̂ · Ĥ

)
13. (2.3.65)

This effectively rewrites the stress in terms of the fundamental field operators. Using
the Gauss theorem, the total force operator can then be written in the form

F̂ =
∫

∂V

dA · σ̂ −
∫

V

d3r
∂

∂t

(
D̂ × B̂

)
. (2.3.66)

To obtain themeasuredCasimir force, wemust average the stress tensor in the ground
state of the polariton field. The force is then

F =
∫

∂V

dA · 〈{0}| σ̂ |{0}〉 −
∫

V

d3r
∂

∂t
〈{0}| D̂ × B̂ |{0}〉 . (2.3.67)

According to the Schrödinger equation, the ground-state is constant in time. The
second term therefore vanishes, and we can state the force as

F =
∫

∂V

dA · σ, (2.3.68)

where σ is the expectation value of the stress tensor in the ground-state. The ground-
state expectation values can be computed by expanding the fields in terms of the
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fundamental bosonic field operators (2.2.31–2.2.36), exploiting their properties
(2.2.23), but neglecting absorption.9 In doing so, we find that [1, 16]

〈
Ê (r) ⊗ D̂

(
r′)〉 = �

π

∞∫

0

dωμ0ω
2ε0ε (r, ω) ImG(r, r′, ω), (2.3.69)

〈
B̂ (r) ⊗ Ĥ

(
r′)〉 = �

π

∞∫

0

dω
1

μ(r, ω)
∇ × ImG(r, r′, ω)×

←−
∇′ . (2.3.70)

The stress tensor, evaluated at position r, is then readily cast into the form [1]

σ(r) = �

π

∞∫

0

dω

(
τ(r) − 1

2
Tr [τ(r)] 13

)
, (2.3.71)

where Tr implements the trace function. This involves integrating over all frequencies
the function

τ(r) = ω2

c2
ε (r, ω) ImG(r, r, ω) + 1

μ(r, ω)

[
∇ × ImG(r, r′, ω)×

←−
∇′
]

r′=r
.

(2.3.72)

The stress is therefore determined by the classical Green function of the field.

2.3.3 Regularising the Stress Tensor

However, the stress tensor (2.3.71), like the zero-point energy, turns out to be infinite.
To facilitate the removal of the divergence, we introduce an additional positional
argument r′ and define the regularised stress tensor

σ = lim
r′→r

〈
σ̂ (r, r′) − σ̂0(r, r′)

〉
. (2.3.73)

The first term of (2.3.73) is a quantum correlation function defined by

σ̂ (r, r′) = Ê(r) ⊗ D̂(r′) + B̂(r) ⊗ Ĥ(r′) − 1

2

(
Ê(r) · D̂(r′) + B̂(r) · Ĥ(r′)

)
13,

(2.3.74)

9 We retain only the real parts. To take proper account of absorption in media requires a more
sophisicated formulation of macro-QED [4]. However, the stress tensor is the same [3].
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which is identical in form to the quantum stress in the limit as r′ → r. The subtraction
of the second term σ̂0 in (2.3.73) is typically associated with the removal of illicit
‘self-forces’. Both of these terms in the expression are finite for r′ �= r, so the
subtraction is well-defined. Applying once again results (2.3.69) and (2.3.70), the
stress correlation function (2.3.74) can be expressed in the form [1]

σ(r, r′) = − �

π

∞∫

0

dξ

(
τ(r, r′) − 1

2
Tr

[
τ(r, r′)

]
13

)
, (2.3.75)

which involves integrating over the imaginary axis the associated correlation func-
tion10

τ(r, r′) = ξ2

c2
ε (r, iξ) G(r, r′, iξ) − 1

μ(r, iξ)
∇ × G(r, r′, iξ)×

←−
∇′ . (2.3.76)

The additional step of rotating to the imaginary axis is amathematical trick to produce
a more rapidly converging integral, necessitating the evaluation of the dielectric
functions at imaginary frequencies. These quantities can be obtained from the original
functions by Hilbert transforms. The correlation function is expressed in terms of
the classical Green function of the electromagnetic field, which may be associated
in this case with the magnitude of a field at r produced by a dipole situated at r′
oscillating with ‘imaginary frequency’ ξ , which probes the properties of the system.

2.3.3.1 The Meaning of the Regularisation

Concerning the regularisation procedure, it must be emphasised that, in attempting to
isolate and remove the divergences in the stress tensor, we are not in general at liberty
to subtract anything that depends upon the inhomogeneity of the medium. This could
abitrarily modify the Casimir force, which itself arises as a result of scattering due to
material inhomogeneities in the system (see Eq. (2.3.56)), as we have discussed. This
fairly obvious stricture has frequently been violated without adequate justification in
the literature. However, the purchase of finitude at the cost of meaning is too high a
price to pay. In Lifshitz theory, the regularisation is assigned a fairly precise seman-
tics [14] best expressed at the level of the Green function, which we may write as

G(r, r′) = (
G(r, r′) − G0(r, r′)

)+ G0(r, r′), (2.3.77)

where G0 is an auxiliary Green function for an infinite homogeneous mediumwhose
dieletric properties are the same as that of the actual medium at the point r ′. As we
have argued, there is no Casimir force in an infinite homogeneous medium; the third
term in (2.3.77) can effectively be absorbed into a bulk stress term that is not associ-

10 For a discussion of Wick rotation to the imaginary axis, see Appendix A.
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ated with the Casimir force. This results in a renormalisation of the stress in which
both the form and meaning of σ0 in Eq. (2.3.73) are now apparent: to determine the
physical part of the stress tensor relevant to the measurable Casimir force, we sub-
tract a bulk stress σ0 corresponding to an infinite homogeneous medium, effectively
renormalising the Casimir stress to zero in the absence of any inhomogeneity in the
system. We may also define the renormalised Green function

GS(r, r′) = G(r, r′) − G0(r, r′), (2.3.78)

corresponding to the scattered part of the electromagnetic field. Simply computing
the stress using the scattered Green function (2.3.78) is equivalent to computing the
stress using Eq. (2.3.73).

2.4 The Lifshitz Result for Two Half-spaces

Lifshitz’ original paper considered the case of the force produced due to fluctuations
between two parallel dielectric half-spaces, separated by empty space [5]. This result
was subsequently generalised to allow for the case of a liquid medium between the
moving bodies, as well as vacuum, producing a general expression for the force
that recovers Casimir’s own expression in appropriate limits [12]. By solving the
wave equation to determine the correct Green function, we can recover this well-
known result from our more general expressions (2.3.73–2.3.76). The calculation is
somewhat involved, however, and we present here only an outline.

2.4.1 The Force in a Dielectric Sandwich

2.4.1.1 The Planar Green Function

In planar dielectrics, we can arrange our coordinate system so that ε and μ depend
on x , but not on y and z. In view of the symmetry in y and z, we introduce a spatial
Fourier transformation to simplify the problem:

G(r, r′) = 1

(2π)2

+∞∫

−∞

+∞∫

−∞
G̃(x, x ′, ky, kz) eiky(y−y′)+ikz(z−z′)dkydkz, (2.4.1)

noting that
∇ = (∂x , iky, ikz), ∇′ = (∂x ′ ,−iky,−ikz). (2.4.2)

The Green function obeys the Fourier transformed wave equation
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∇ × 1

μ
∇ × G̃ + εκ2G̃ = 13δ(x − x ′), (2.4.3)

where κ = ξ/c. Solving the wave equation is slightly involved, even for this simple
system, and we will not repeat all the details here.11 The Fourier-transformed Green
function may be expressed in the form

G̃ = G̃e + G̃m, for x �= x ′, (2.4.4)

consisting of two separate contributions [1],

G̃e = nE g̃e ⊗ n′
E , G̃m = −∇ × nE g̃m ⊗ n′

E×
←−
∇′

εε′κ2 , (2.4.5)

where

nE = 1√
k2y + k2z

⎛

⎝
0

−kz

ky

⎞

⎠ , n′
E = −nE . (2.4.6)

Primed terms are evaluated at position r ′, and the operator
←−
∇′ acts to the left with

respect to r ′. For this geometry, the problem may be essentially rewritten in terms of
electric and magnetic scalar Green functions that solve the wave equations

∇ · 1

μ(x)
∇g̃e(x) − ε(x)κ2g̃e(x) = δ(x − x ′), (2.4.7)

∇ · 1

ε(x)
∇g̃m(x) − μ(x)κ2g̃m(x) = δ(x − x ′). (2.4.8)

2.4.1.2 The Planar Stress

We can write the stress correlation functions (2.3.75, 2.3.76) in terms of the Fourier-
transformed Green function (2.4.4), shifting the prefactor and the integations to the
second correlation function:

σ =
∑

λ=e,m

(
τλ − 1

2
Tr τλ 13

)
, (2.4.9)

where we have separated the stress into components that depend on the electric and
magnetic Green functions, and

11 The full details of this approach can be found in [1].
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τλ = �c

π

∞∫

0

dκ

+∞∫

−∞

dk‖
(2π)2

(
−κ2εG̃λ + 1

μ
∇ × G̃λ×

←−
∇′
)

, (2.4.10)

with k‖ = (
0, ky, kz

)
. The inverse Fourier-transform nullifies any terms that are odd

in ky or kz and both the G̃e and the G̃m contributions have ‘off-diagonal’ components
that then vanish in the integral. It follows that the stress correlation function is
isotropic, i.e.

σ = diag(σxx , σyy, σzz). (2.4.11)

Furthermore, the Green function does not depend on y and z, which is evident from
the symmetry of this problem. The only component that is relevant to the Casimir
force, in this case, is σxx , where

σxx =
∑

λ=e,m

(
τλ,xx − 1

2
Tr τλ

)
. (2.4.12)

Consider the contribution of the electric component of the correlation function. We
find that

τe,xx = −�c

π

∞∫

0

dκ

+∞∫

−∞

dk‖
(2π)2

1

μ
(k2y + k2z )g̃e, (2.4.13)

Tr τe = �c

π

∞∫

0

dκ

+∞∫

−∞

dk‖
(2π)2

(
κ2ε − 1

μ
(k2y + k2z + ∂x∂x ′)

)
g̃e. (2.4.14)

It follows that the electric component of the stress is of the form [1]

σe,xx = −�c

2

∞∫

0

dκ

+∞∫

−∞

dk‖
(2π)2

1

μ
(w2 − ∂x∂x ′)g̃e, (2.4.15)

where
w =

√
k2y + k2z + n2κ2, n = √

εμ. (2.4.16)

Similarly, for the magnetic contribution, we find that

σm,xx = −�c

2

∞∫

0

dκ

+∞∫

−∞

dk‖
(2π)2

1

ε
(w2 − ∂x∂x ′)g̃m . (2.4.17)
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Both of these contributing terms, however, are infinite. To obtain a finite and physical
result, we need to renormalise the stress tensor. This may be achieved at the level of
the scalar Green functions by isolating the scattered components of g̃e and g̃m .

2.4.1.3 The Scattered Green Function

We are considering a dielectric sandwich consisting of three uniform regions charac-
terised by dielectric constants {ε1, μ1}, {ε2, μ2}, and {ε3, μ3}. The outer dielectrics
are idealised to be infinitely thick, the left outer plate extending from x ∈ (−∞, 0),
the inner region from x ∈ [0, a], and the right outer plate from x ∈ (a,∞). We could
proceed by solving the scalar wave equations, with the corresponding boundary con-
ditions, to obtain g̃e and g̃m . However, it is mathematically simpler (and physically
more engaging) to determine the solution by thinking about the structure of the scalar
waves and the multiple propagations and reflections that will occur at the boundaries.

The scalar Green functions should describe waves emitted at x ′ that are multiply
reflected at the dielectric interfaces. Let rL and rR be the left and right reflection
coefficients of the plates. These factors are determined by the relevant permittivities
and permeabilities. Multiple reflections and propagations add up to

∞∑

m=0

(
e−2awrLrR

)m = 1

1 − e−2awrLrR
. (2.4.18)

Now consider all possible multiple reflections and propagations from x ′ with the
strength −1/2w of the bare Green function

g̃0 = − 1

2w
e(−w|x−x ′|). (2.4.19)

This collection consists of forward and backwards-directed waves emitted at x ′ and
measured at x , after multiple reflections. For the forwards-directed waves, there are
two cases:

1. when x ′ < x , the wave proceeds directly to x on its first cycle, and the distance
between the source and the point of measurement is simply x − x ′;

2. when x ′ > x , thewave picks up an extra reflection rR on the right on its first cycle;
the distance between source andmeasurement is (a−x ′)+(a−x) = 2a−x −x ′.

And for the backwards-directed waves, there are also two cases:

1. when x ′ > x , the wave proceeds directly to x on its first cycle; the distance
between source and measurement is x ′ − x .

2. when x ′ < x , the wave picks up an extra reflection rL on the left before it is
measured at x ; the distance between source andmeasurement is x ′+x ′+(x−x ′) =
x + x ′.
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In total, this gives

g̃1 = − 1(
1 − e−2awrLrR

) · 1

2w

(
e−w(x−x ′) + e−w(x+x ′)rL + ew(x−x ′) + ew(x+x ′−2a)rR

)
.

(2.4.20)
Notice, however, that if x ′ < x , the direct propagation from x ′ to x for the backwards-
directed wave,

g̃ = − 1

2w
ew(x−x ′), (2.4.21)

is not possible; only indirect propagations that involve multiple reflections are possi-
ble. Likewise, if x < x ′, then direct forward-propagating waves are not possible. We
must therefore subtract these contributions12; ergo, we must add the scalar Green
function

g̃2 = 1

2w

(
ew(x−x ′) + e−w(x−x ′)

)
. (2.4.22)

We may therefore express the scalar Green function as

g̃ = g̃0 + g̃1 + g̃2. (2.4.23)

The renormalised scalar Green function, which is associated with scattering, is then

g̃S = g̃ − g̃0 = g̃1 + g̃2. (2.4.24)

Consider that, in the stress function, the terms e−w(x+x ′)rL and ew(x+x ′−2a)rR are
eliminated due to the term (w2−∂x∂x ′)g̃S . The only terms that are retained are those
that contain e±w(x−x ′), and these are effectively doubled. Incorporating this factor
of two into the stress, and taking the limit x ′ → x , we can express the scalar Green
function as [1]

g̃S = − 1

w(r−1
L r−1

R e2aw − 1)
. (2.4.25)

2.4.1.4 The Regularised Stress

It is now possible to state the relevant, renormalised component of the stress exactly:

σxx = 2�c
∑

λ=e,m

∞∫

0

dκ

2π

+∞∫

−∞

d2k‖(
2π2

)w
rλLrλR e−2aw

1 − rλLrλR e−2aw
. (2.4.26)

12 In the limit as x ′ → x , this amounts to subtracting the self-interacting terms. Only waves which
have explored the environment contribute to the Casimir force.
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This is Lifshitz’ celebrated result [5] in a more general form.13 When we consider
the Green functions in the outer plates, we note that the only terms that depend on
e±w(x−x ′) are those describing direct propagation, and that these are subtracted from
g̃ in g̃S . It follows that the Casimir force vanishes in the outer plates. The force density
is concentrated in the interface as a delta function, pointing inwards (attractive) if
σxx is positive and outward (repulsive) if σxx is negative. For the case of uniform
plates, the electromagnetic reflection coefficients are given by [2]:

reL = μ1w2 − μ2w1

μ1w2 + μ2w1
, rmL = ε1w2 − ε2w1

ε1w2 + ε2w1
, (2.4.27)

reR = μ3w2 − μ2w3

μ3w2 + μ2w3
, rm R = ε3w2 − ε2w3

ε3w2 + ε2w3
, (2.4.28)

where the physical quantities are evaluated in the subscripted regions.

2.4.2 The Casimir Force in the Limit

To recover Casimir’s original result, we assume vacuum between the plates ε2 =
μ2 = 1, and we take the limit ε1, ε3 → ∞, with μl , μr = 1. The second condition
corresponds to the case of a perfect electric mirror. We see from (2.4.27) that reL =
−1. Similarly, reR = rmL = rm R = −1. This is the phase jump of π at the mirror.
We obtain

σxx = �c

2π3

∞∫

0

+∞∫

−∞

+∞∫

−∞

w

e2aw − 1
dky dkz dκ. (2.4.29)

This integral is best expressed in spherical coordinates, with w as the radius:

σxx = �c

2π3

∞∫

0

2π∫

0

π/2∫

0

w3 sin φ

e2aw − 1
dφ dθ dκ = �c

π2

∞∫

0

w3

e2aw − 1
. (2.4.30)

On calculating the integral, we find that

σxx = �cπ2

240a4 = σCasimir. (2.4.31)

We have recovered Casimir’s original result (1.1.23) from Lifshitz theory, expressed
in terms of the Minkoswki stress.

13 The Lifshitz result was not originally cast in terms of reflection coefficients, until Kats observed
that it was natural to do so [26]. Indeed, expressed in this form [1] it remains valid even when the
optical response of the mirrors cannot be described by a local dielectric response function [27].

http://dx.doi.org/10.1007/978-3-319-09315-4_1
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2.4.3 Boyer’s Repulsive Mirrors

As a passing curiosity that has prompted much speculation, there is a second and
similar case that has been calculated [17] in which the Casimir force turns out to be
repulsive. This time, whilst retaining a perfect electric mirror on the left, with ε1 →
∞, μ1 = 1,we substitute a perfectmagneticmirror on the right, with ε3 = 1, μ3 →
∞. In this case, the reflection coefficients are reL = rmL = −1, but reR = rm R = 1.
It follows that

σxx = − �c

2π3

∞∫

0

+∞∫

−∞

+∞∫

−∞

w

e2aw + 1
dky dkz dκ = − �c

π2

∞∫

0

w3

e2aw + 1
. (2.4.32)

On computing the integral, we find

σxx = −7

8
σCasimir. (2.4.33)

Here, the vacuum force causes an electric and a magnetic mirror to repel each other.
However, like Casimir’s result, this holds only for the highly idealised case of perfect
mirrors.RepulsiveCasimir forces in realmaterials remain the debated exception,with
prohibitive theorems extending both tometamaterials14 and chiral materials [18–20].
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Chapter 3
The Quantum Nature of the Casimir Force

Natura abhorret vacuum (Translated: Nature abhors a vacuum).

Franois Rabelais, Gargantua and Pantagruel

3.1 Diverging Accounts of the Casimir Effect

We have been considering the Casimir Effect from a number of different theoretical
perspectives. In the light of what we have discussed, and before proceeding any
further, it is worth taking the time to ask a simple question: what, then, are we actually
talking about? Certainly, the Casimir Effect is an empirically verified phenomenon
involving attractive (or repulsive) forces between macroscopic objects that persists
even at zero temperature in a vacuum [1, 2].

However, explanations of the phenomenon are not uniformly consistent among
theorists. TheCasimir force has been described, on the one hand, as an effect resulting
from the alteration, by the boundaries, of the zero-point electromagnetic energy [3].
On this account, the force is a property of the vacuum and “clear evidence for the
existence of vacuum fluctuations” [4]. On the other hand, the Casimir Effect has also
been described as a “force [that] originates in the forces between charged particles”
that can be “computed without reference to zero point energies”. According to this
alternative account, “The Casimir force is simply the (relativistic, retarded) Van der
Waals force between the metal plates” and the phenomenon offers “no evidence that
the zero-point energies are real” [5].

This is rather unsatisfactory [6–8]. We should like to be able to say something
clearly (albeit provisionally1) about what this phenomenon subsists in, and what it
may imply about the nature of physical reality. However, to adopt a more metaphys-
ical parlance, these popular accounts of the Casimir Effect appear to invoke different

1 Inevitably, this is an interim position. We know that a better theory will eventually be required
because of the deep problems in reconciling quantum field theory and gravity.
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58 3 The Quantum Nature of the Casimir Force

ontologies in which a certain metaphysical priority is exchanged between the matter
and the fields.

In this chapter, our aim is to side-step the technical details of Casimir physics and
reconsider the basic ideas, with the hope of achieving some conceptual clarity. In so
doing it will become apparent that these inconsistent interpretations are grounded in
theories that fail to offer a consistently quantum-mechanical description of the inter-
action of the field with matter. There are two sides to this quantum-mechanical coin,
but neither appears to be weighted. In the author’s opinion, the proper locus for inter-
preting the Casimir Effect is the theory of macroscopic quantum electrodynamics,
in which the necessary quantization of the electromagnetic field and its coupling to
bulk materials receives a canonical and consistently quantum-mechanical treatment.

3.2 Three Theories of the Casimir Force

3.2.1 Casimir’s Theory and the Quantum Vacuum

3.2.1.1 Theoretical Context

We shall focus our efforts on Casimir’s classic thought-experiment. In the standard
account of the Casimir Effect, the predicted force occurs between a pair of neutral,
parallel conducting plates, separated by a distance d, in vacuum at zero temperature.2

The interaction arises due to a disturbance of the vacuum state of the electromagnetic
field (in which there are no real photons between the plates) [1]. This is a quantum
effect, as classical electrodynamics does not predict a force at zero temperature.

The prescribed procedure may be summarised as follows [3]: take the infinite
vacuum energy of the quantized electromagnetic field, with Dirichlet boundary con-
ditions imposed on the field modes,

E = 1

2

∑
�ω, (3.2.1)

and subtract from it the infinite vacuum energy in free Minkowski space (or with
the boundaries infinitely separated), E∞, having first regularized both quantities
E → E(ξ), E∞ → E∞(ξ) so that the subtraction procedure is well-defined. Once
the difference between the two energies has been computed, the regularization is
removed, ξ → 0, and the result that remains is finite:

ECasimir = lim
ξ→0

[E(ξ) − E∞(ξ)] . (3.2.2)

2 See Chap.1 for a discussion of the original Casimir Effect.

http://dx.doi.org/10.1007/978-3-319-09315-4_1
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This is the renormalised Casimir energy, from which we can derive the mechanical
force exerted on two parallel plates. For Casimir’s case, in which the mirrors are
perfectly reflective for all frequencies, we find the pressure force

P = − �cπ2

240d4 . (3.2.3)

The astute reader will rightly object that our own procedure for extracting Casimir’s
result in Chap.1 differed slightly from this recipe, and indeed nobody follows the
standard prescription precisely for the case of the electromagnetic field, though it has
been pedagogically applied to a 1d scalar field [3] where the calculation is somewhat
simpler. As we have seen, if we apply a frequency cutoff term exp(−ξω/c) as
the regulariser, we discover an additional divergent term that is not removed by
subtracting the so-called background energy [9], which appears to correspond to
waves running parallel to the plates.3 This extra term has to be discarded also in
order to state a finite electromagnetic Casimir energy. Typically it disappears in the
course of applying the Euler-MacLaurin formula (e.g. [7, 11, 12]), or as a result of
applying some other mathematical trick where the physical meaning is difficult to
discern. Suffice it to say that the simple picture of taking the difference between two
electromagnetic field energies can be somewhat misleading.

3.2.1.2 Physical Interpretation

Nevertheless, considered on the basis of an energy mode summation, as employed
by Casimir [1], it seems the quantised electromagnetic field in its ground-state with
‘external boundary conditions’ is sufficient to determine a force—an almost matter-
free prescription for obtaining the phenomenon in which the interacting bodies
become simply topological features of the space [7]. Casimir’s formula, depend-
ing solely upon the constants � and c and the distance d between the plates, serves
to consolidate this impression [5].

But this interpretation is naive. The vacuum energy, as we have observed, is
infinite, and in addition to imposing boundary conditions on the field we apply
some form of regularisation to tame the mode summation and permit the subtraction
(or extraction) of diverging terms. Although the various mathematical techniques
employed to do this often obscure the fact, it is in the procedure of regularisation
that some of the properties of matter—in particular, its dispersive behaviour—are
permitted to leak into the calculation, albeit rather crudely [9]. Significantly, it is not
possible to extract anything meaningful (or measureable) about the Casimir force
until they are permitted to do so. Furthermore, when we relax the highly artificial
boundary condition of perfect mirrors, as we must in order to predict the Casimir
Effect in real materials, we are forced to sum contributions to the Casimir energy
over a dispersive material response across the whole mode spectrum, substantially

3 This additional term appears as the second term in Eq. (1.1.21).

http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
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modifying the predicted force. To do this kind of calculation, however, we must
abandon themode summation and adopt amore sophisticated apparatus, like Lifshitz
theory. Casimir’s result can still be recovered, but only as a limiting case [11].

3.2.2 Lifshitz Theory and Stochastic Fluctuations

3.2.2.1 Theoretical Context

Lifshitz theory, which we discussed in Chap.2, has proven an important benchmark
for the prediction of Casimir forces in more realistic cases, enjoying significant
experimental verification [13, 14]. In the context of Lifshitz theory, the Casimir
Effect is a result of fluctuating current densities in the two plates [15–17]. A force
arises from the interaction of the currents through the electromagnetic field that they
generate in the cavity. The plates are now treated more realistically as dielectric with
frequency-dependent permittivities and permeabilities, and this substantially affects
both the size (and, in some cases, the nature4) of the predicted force.

The formalism is written in terms of the electromagnetic Green function, which
describes the field produced by sources of current within the system (2.2.30), includ-
ing the stress tensor fromwhich the force is derived (2.3.75, 2.3.76). The stress tensor,
however, like the zero-point energy, contains a divergent contribution that must also
be regularised.5 Typically this is achieved by subtracting a stress σ0 calculated using
an auxiliary Green function associated with an infinite homogeneous medium [11,
17–20], and computing the physical stress in the limit of the point of measurement
approaching a point source:

σCasimir = lim
r′→r

[
σ(r, r′) − σ0(r, r′)

]
. (3.2.4)

One can then determine a finite stress tensor for the system that depends on the
dielectric functions of thematerial at imaginary frequencies (quantities obtained from
the dielectric properties for real frequencies by Hilbert transformation). Only then
can the force be derived. Both Casimir’s and Lifshitz’ regularizations give identical
results in the limiting case of a cavity sandwichedbetweenperfectly reflectingmirrors
(2.4.31).

4 Lifshitz theory predicts repulsive Casimir forces, under certain circumstances [35].
5 As we shall see, additional divergences in the stress appear in the generalisation to inhomogeneous
media (where the optical properties vary continuously along at least one spatial axis). In this case,
the regularisation cannot remove the infinities [9, 10, 36, 37].

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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3.2.2.2 Physical Interpretation

An incautious reading of Lifshitz theorymight suggest that the role of the vacuumhas
been successfully banished from the Casimir Effect. Ontologically, the conditions
seem to involvemerely thematerial in the plates and a stochastic source offluctuations
within the material. An electromagnetic field results from the fluctuating currents in
the plates, producing amechanical stress in the same pieces ofmaterial that generated
it. There is no Hamiltonian in the original formulation of Lifshitz theory [15, 16] and
there are noquantizedfields. There is therefore noground-state of the electromagnetic
field. To some, this does not even appear to be a quantum-mechanical theory at all
[18, 21–23].

But the fluctuations in the material that persist even at zero temperature are not a
classical phenomenon; they are inserted ‘by hand’ usingRytov’s correlation function.
This can be derived from statistical physics, or fromfluctuation-dissipation theorem,6

and affords the average electromagnetic field that would be present at finite (or zero)
temperature [24].

Lifshitz theory is arguably uncommitted to the particulars of a quantum theory of
light in material, however, as opposed to a merely stochastic theory of the phenom-
ena, being based rather on the principles of thermodynamics and statistical physics
[18, 21]. It embodies at best a minimal treatment of the quantum mechanics that is
phenomenologically driven. It is therefore ontologically ambiguous about the role of
the vacuum.7 A clearer interpretation of the underlying physics cannot be achieved
without the vantage point of a more quantum-mechanically consistent position.

3.2.3 Macroscopic QED and the Polariton Field

3.2.3.1 Theoretical Context

A recent and more sophisticated formulation of macroscopic quantum electrody-
namics than the kind we adopted in Chap. 2 offers a canonical quantum-mechanical
treatment of the interaction of light with real materials, without the detailed reference
to the microscopic material structure that must defeat any complete treatment of such
systems, and without sacrificing quantum-mechanical consistency along with more
phenomenologically driven approaches [21]. Significantly, this form of macro-QED
is the only canonical method that reproduces and justifies the general Lifshitz the-
ory result for the stress tensor and determines the Casimir energy density inside a

6 See Sect. 2.2.
7 Some argue for the consistency of Lifshitz theory with Casimir’s approach. Bordag writes:
“Lifshitz considered the fluctuations in the medium as source. In the modern understanding, these
two are equivalent. However, the discussion about two ways continues until present time” [28].
Schwinger, on the other hand, seems to exploit the ambiguity of Lifshitz’ theory with his ‘source
theory’, replacing the fluctuations of the vacuum with source fields in the plates, with the intention
of removing any references to a vacuum state with non-zero physical properties [27].

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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medium [16], resolving a long-standing dispute over the form that these expressions
should take in this context [18, 20, 25, 26]. It applies with full generality to arbitrary
magnetodielectrics, taking full account of the phenomena of dispersion and dissipa-
tion. First, in distinction to the shortcuts taken in Chap. 2, an action is formulated in
terms of the dynamical variables {φ,A}, the scalar and vector potentials of the fields,
and {Xω,Yω}, a pair of oscillator fields incorporating the dissipative behaviour of
the material:

S[φ,A,Xω,Yω] = Sem[φ,A] + SX [Xω] + SY [Yω] + Sint [φ,A,Xω,Yω], (3.2.5)

where Sem is the free electromagnetic action, SX and SY are the actions for the
free reservoir oscillators, and Sint is the interaction part of the action, coupling the
electromagnetic fields to the field reservoirs of the material. Maxwell’s equations can
be recovered from this action, and canonical quantisation proceeds straightforwardly.
As before (2.1.40), a diagonalised Hamiltonian is achieved,8

Ĥ = 1

2

∑

λ=e,m

∫
d3r

∞∫

0

dω �ω
(

f̂λ(r,ω) · f̂λ(r,ω) + f̂λ(r,ω) · f̂λ(r,ω)
)
, (3.2.6)

where the eigenmodes are bosonic creation and annihilation operators obeying com-
mutation relations

[
f̂λi (r,ω), f̂λ′ j (r

′,ω′)
]

= δi jδλλ′δ(ω − ω′) δ(r − r′), (3.2.7)
[

f̂λi (r,ω), f̂λ′ j (r
′,ω′)

]
= 0. (3.2.8)

Charge and density operators for the material in the plates, as well as operators for
the electromagnetic field, are then expressed in terms of the creation and annihilation
operators of the system.

Casimir forces are caused by the stress-energy of the electromagnetic fields in
a state of thermal equilibrium. We require the eigenmodes of the system to be in
a thermal mixed quantum state. To determine the Casimir force, we consider the
ground-state of the systemand compute the electromagnetic part of the energydensity
or stress tensor [18], where the complete stress-energy-momentum tensor of the
system is obtained self-consistently from the application of Noether’s theorem to the
original action. The Casimir stress tensor is recovered as the expectation value of the
electromagnetic component in thermal equilibrium. At zero-temperature, we recover
the zero-point Casimir stress, which has the same form as the more general result for

8 The zero-point term is suppressed in the statement of the diagonalised Hamiltonian in the original
paper [21], but a zero-point energy is present nonetheless.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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the stress tensor in Lifshitz theory, and from which the Casimir forces in the system
can finally be determined [16], once the stress tensor has been regularised.9

3.2.3.2 Physical Interpretation

The canonical theory of macroscopic quantum electrodynamics—at least, at
present—seems to offer the richest and most general basis for interpreting Casimir
phenomena. In macro-QED the materials and the fields are placed on a more equal
footing. Physics necessitates the quantization of the fields, and a consistent account
of quantised light in media demands a quantum representation of the relevant prop-
erties of the material. In the Hamiltonian for macro-QED, both aspects of the system
are quantised and coupled. The quantum of this system—that is, its irreducible unit
of excitation—is a type of polariton.

This in turn means that the matter is coupled to the vacuum state of the fields.
Under the condition of thermal equilibrium,10 it follows that the ground-state of
the total system, including both the matter and the fields, is endowed with physical
properties. To see this, consider the following: the fluctuating currents in one plate
only interact with the currents in the other if they communicate with them, and they
communicate through the electromagnetic field. At zero temperature, there are no
photons between the plates, on pain of violating thermodynamic equilibrium; the
electromagnetic field is therefore in its ground state. At zero temperature, therefore,
the currents in the plates can only communicate through the zero-point radiation.

There is another sense in which macro-QED places the matter and the fields on
an equal footing: the Lagrangian formulation that underlies the action, in which the
fields, the material and their interaction are posited, is acausal in this respect: we
could view the matter as producing the fields, or we could view the fields as inducing
the currents in the matter; the actual physics of the phenomenon does not prioritise
either.11

3.3 Three Ontologies of the Casimir Effect

3.3.1 Semi-classical Ontologies

Broadly speaking, it is possible to characterise the polarisation of opinion (or pref-
erence) concerning the Casimir Effect into two ontologically distinct positions in
which a certain metaphysical priority is exchanged:

9 See Sect. 2.3.3.
10 Lifshitz’ stress tensor, commonly used for calculating Casimir forces in realistic systems, is in
fact derived under the condition of thermal equilibrim [15, 16, 25].
11 The dynamics are obtained by extremising the action.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
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(I) a vacuum-field interpretation: there exists an electromagnetic quantum vacuum
field, whose properties are modified by material (or topological) constraints,
which gives rise to forces between material bodies.

(II) a fluctuating material interpretation: there exist distributions of spontaneously
polarised material, whose quantum fluctuations give rise to forces between them
through the retarded electromagnetic field.

The first account touts the existence of a fluctuating electromagnetic quantum
field in its ground-state—the quantum vacuum, a state that is void of particles or
quanta, but has the property of an energy available for doing work (for an example
of this view, see [3]). This property of the field is modified by the imposition of
material (or topological) constraints. In the case of the two parallel plates, the energy
of the vacuum is reduced (made more negative) by the motion of the plates towards
each other. The attractive Casimir force that results is thus a consequence of the
zero-point energy of the vacuum; that is, the energy associated with the fluctuations
of the vacuum.

On the second account, it is claimed that one is not required to invoke electro-
magnetic quantum fluctuations of the vacuum to explain Casimir phenomena, and
the Casimir force is essentially reinterpreted as a giant van der Waals effect (for
examples of this approach, see [5, 27]). The material in the plates (as opposed to any
field between the plates) is subject to quantum fluctuations. These spontaneous dis-
turbances produce field-generating currents within the plates, which interact through
the retarded electromagnetic field they have created. These interactions result in a
force between the plates.

The seasoned theorist may put it down to a matter of personal taste as to which
of the two approaches is preferable, arguing that either position is empirically ade-
quate [28]. The ingeniously contrived path-integral scattering method developed in
[29], for instance, obtains two equivalent representations of the Casimir energy, one
in terms of fluctuating fields and the other in terms of fluctuating charges.

However, the theories in which these approaches are typically grounded do not
enjoyboth the consistency and the generality ofmacro-QED.For example, in addition
to offering a canonical quantummechanical theory of light in media and determining
the general stress tensor, macro-QED is being fruitfully applied to the problem of
electromagnetic effects resulting from the motion of dielectrics, including the hotly
disputed problem of quantum friction, for which there is now a clear and sophis-
ticated answer taking full account of the phenomena of dispersion and dissipation
[30, 31]. Moreover, accounts (I) and (II) are ontologically divided insofar as the
first requires a quantum vacuum state with physical properties and the second does
not. The van der Waals interpretation does not assign any physical properties to the
vacuum. Importantly, neither of these interpretations is grounded in both a general
and consistently quantum-mechanical description of the interaction of the field with
matter; typically, the quantum mechanical-treatment of the problem falls unevenly
on one aspect or the other.
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3.3.2 A Dual-Aspect Quantum Ontology

Let us consider instead this third option:

(III) a dual-aspect quantum interpretation : there exists a vacuum state of the coupled
system of matter and fields, which determines the ground-state properties of
the electromagnetic field, giving rise to a force.

On this interpretation, theCasimir force is fundamentally a property of the coupled
system of the matter and the fields, in which the interaction between the plates is
mediated by the zero-point fields [18, 21]. This interpretation affirms and denies
different tenets of interpretations (I) and (II):

First, in common with (I) rather than (II), there is a vacuum state in (III) which
has a physical energy and a role to play in the Casimir Effect. That is, despite the
absence of photons between the plates, and thermal vibrations within the plates, the
walls of the cavity will still experience an attractive force. Contra (I), but in consort
with (II), however, the Casimir Effect does not warrant the assignment of physical
meaning to the energy of the vacuum state of the field as a ding-an-sich,12 or totting
up its modes in an enormous contribution to the cosmological constant (it is typically
cut off at the Planck scale) [32, 33]. The Casimir Effect offers no justification for
quantizing the plane waves of an infinite homogeneous space (which presupposes no
coupling to matter) and reifying the ‘zero-point energy’ obtained. There is no force
in that case, nor anything for a force to act on. In the quantisation of light coupled to
matter, however, the modes of the field are no longer characterised by plane waves.
In other words, it is in this state of interaction that we determine the Casimir energy
and measure a Casimir force. Regularisation amounts to drawing a perimeter around
this interaction.

This is enough clarification for our purposes. We have described the requisite
ontology of the Casimir Effect as ‘dual-aspect’, an appelation that is intended to be
sufficiently generous to encompass more detailed accounts within the constraints
we have discussed. In some sense, the electromagnetic and material aspects of the
system are simultaneously present in the vacuum state. However, it is not without
the additional structure involved in the details of their interaction that they contribute
any actual properties to the system that make contact with observable reality. This
irreducible character of the system, in which the ‘whole’ is more than the sum of
its ‘parts’, is formally represented in the Hamiltonian (via the action) through the
addition of an interaction term. In seeking a more detailed account, perhaps we may
take our cue from Heisenberg, who saw the wave function as neither the description
of any actual state of affairs, nor merely a convenient calculating device, but as
referring to a kind of potentiality [34], and would presumably have described the
vacuum similarly.13 Perhaps for others, the language of emergence may prove the

12 That is, a thing in itself.
13 Saunders’ observation is sapiential. He writes: ‘on every other of the major schools of thought on
the interpretation of quantum mechanics [besides stochastic hidden variable theories]... there is no
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more useful in relating the different aspects of this problem. These are conceptual
problems that call for further discussion elsewhere.

3.4 Summary Remarks

In a general and consistently quantum-mechanical theory of light in media, the
Casimir Effect may be properly described as a force arising out of the ground-state
properties of a polariton field—a coupled, quantised system of dielectric material
and electromagnetic fields. In its ground state, the system cannot be separated into
material or electromagnetic quanta, since none have been excited. Nevertheless, a
Casimir force is predicted between the plates.

In interpreting Casimir’s theory, however, the metaphysical emphasis seems to
have fallen either on the electromagnetic field or the fluctuating material in the
plates. On the first interpretation (I), a universal vacuum field is postulated, in which
the ontological role of matter is (sometimes minimally) acknowledged in the form of
boundary conditions and (sometimes unconsciously) in the regularisation process.
On the second interpretation (II), the bulk material in the plates is prioritised, in
which the fluctuating currents generate a field between the cavity that attracts the
plates together. The role of the vacuum is void.

However, neither of these interpretations is entirely adequate, and this may lead
to false predictions. For example, in opposition to (I), there is no reason to suppose
that the energy of the vacuum state in the absence of any coupling is real, or that the
Casimir Effect validates the huge contribution to the cosmological constant that this
hypostatisation entails. The Casimir force, ironically, should not be seen through the
lens of Casimir’s calculation, which is itself without physical application, being at
best the limiting case of a more complicated, more abstract, and more consistently
quantum-mechanical theory, in which the effects of matter and light are inextricably
intertwined.
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Part II
Surprises in Casimir Theory



Chapter 4
The Cut-off Independence of the Casimir Energy

“Begin at the beginning,” the King said, gravely, “and go on till
you come to an end; then stop.”

Lewis Caroll, Alice in Wonderland

4.1 Beyond Homogeneous Media

In Chap.1, we considered the ground state energy of the electromagnetic field in a
piston geometry (see Fig. 1.2) for the idealised case where the piston and the walls of
the chamber are taken as perfect mirrors. A moveable mirror is positioned at x = a.
When the chamber is empty we can recover straightforwardly Casimir’s well-known
expression for the Casimir force (1.1.23). We can also determine the Casimir force
for the case of a cavity filled with a homogeneous medium.1 In cases such as these,
the Casimir-energy of the system can be regularised and is cut-off-independent, and
the Casimir pressure on the piston is finite and independent of the small scale physics
of the media that compose the mirrors.

However, suppose the chamber of the piston were to be filled with a dielectric ma-
terial, in which the refractive index of the medium varies continuously along at least
one axis. Whilst Casimir forces between macroscopic bodies have been calculated
for a variety of systems and geometries [1, 2], it is difficult to find examples in which
the optical properties of the interacting media have not been idealised as perfectly
homogeneous. The purpose of the following discussion is to consider the Casimir
energy for a system incorporating a non-dispersive inhomogeneous medium.2 We
find that the force on the mirror can be stated exactly when computed from a simple
summation over the field modes.

1 See Sect. 2.4.
2 This chapter develops and responds to the argument published in [3], which found a cutoff-
dependence in the Casimir energy when the mirrors are separated by an inhomogeneous medium.
However, this derivation contains an error that substantially affects the results of this paper: equation
(15), describing the electromagnetic field for one of two polarisations, is incorrectly normalised for
modes m = 0. I am grateful to Fanglin Bao for pointing this out.
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4.2 An Inhomogeneous Casimir Piston

In our earlier derivation of theCasimir Effect, the procedure for rendering the ground-
state energy (1.1.1) convergent3 yielded terms that, if dependent on a, remained finite
or vanished in the limit ξ → 0. That is to say, the Casimir force in such cases is cut-
off-independent. However, it is not obvious whether this fortuitous situation occurs
for fundamental reasons. Suppose we take the same cavity with an inhomogeneous
medium within the chamber (for example, Fig. 4.1), in which we assume a perme-
ability and permittivity given by

μ(x) = μ0,

ε(x) = ε0 [1 + δε(x)] . (4.2.1)

Are the divergent terms in the ground-state energy still independent of a? We will
imagine this medium as a rigid body, so that we can neglect any energy associated
with deformation, and attempt to find the behaviour of the force necessary to hold
the mirror fixed at a by computing the mechanical energy of the system. Let us begin
by considering the particular case illustrated in Fig. 4.1,

f (x) = 1

2
[1 − cos(2πx/L)] , (4.2.2)

where the inhomogeneity is written as δε(x) = δα f (x), and δα is a small parameter
describing the size of the perturbation. We emphasise that we are considering some
arbitrary fixed value of L . The quantity L only occurs in this expression in order to
make the permittivity equal to that of free space at the edges of the cavity.

4.2.1 The Modified Casimir Energy

In general it is complicated to find the eigenfrequencies of the electromagnetic field in
an inhomogeneousmedium.Evenwith closed formexpressions for these frequencies,
performing the energy mode-summation (1.1.13) is not straightforward. To proceed
we calculate the rate of change of the energy of the system as an inhomogeneous
index profile is introduced into the cavity. For our purposes, this perturbation need
only be very small. The inhomogeneity (4.2.2) induces a corresponding shift in the
eigenfrequencies,

ωm,λ = ω
(0)
m,λ + δα ω

(1)
m,λ, (4.2.3)

where m labels the spatial dependence of the mode, and λ ∈ {1, 2} the polarisation.
The first term in (4.2.3) denotes the original frequency corresponding to the case
of vacuum, and the second a small perturbation produced by the presence of the

3 See Sect. 1.1.2.

http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
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Fig. 4.1 As in Fig. 1.2, we consider a perfectly reflecting rectangular chamber of length L and
cross sectional area, A. Within the chamber is a mirror, positioned at x = a, and surrounded by an
inhomogeneous dielectric with ε and μ given by (4.2.1). We seek the dependence of the energy of
this system on the parameter a

medium. Assuming the same regularisation as before (1.1.14), the change of the
energy as δε(x) is increased from zero is given by

Ẽ + δ Ẽ

A
= �

4π

∑

m,λ

∞∫

0

k‖dk‖
(
ωL(0)

m,λ + δα ωL(1)
m,λ

)
× e

−ξ
(
ω

L(0)
m,λ +δα ω

L(1)
m,λ

)

+ {L → R}.

(4.2.4)

After a first-order expansion of the second term of the exponent, the rate of change
of the energy, as the strength of the inhomogeneity δα is gradually increased, may
be given by the expression

1

A

δ Ẽ

δα
= �

4π

∂

∂ξ

∑

m,λ

ξ

∞∫

0

k‖dk‖
[
ωL(1)

m,λ e−ξω
L(0)
m,λ (k‖)/c + ωR(1)

m,λ e−ξω
R(0)
m,λ (k‖)/c

]
. (4.2.5)

4.2.2 The Modified Eigenfrequencies

To calculate (4.2.5) we must now determine the first order shifts in the eigenfrequen-
cies. The situation is slightly more involved than before, due to the fact that the two
polarisations do not behave degenerately in the medium. To calculate the change in
the eigenfrequencies of the cavity we use first order perturbation theory. Within the
cavity, the electromagnetic field obeys,

http://dx.doi.org/10.1007/978-3-319-09315-4_1
http://dx.doi.org/10.1007/978-3-319-09315-4_1
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∇×∇×Em,λ − ω2
m,λ

c2
[1 + δε(x)]Em,λ = 0, (4.2.6)

where m labels the spatial dependence of the mode, and λ ∈ {1, 2} the polarisation.
When δε = 0, the modes in the region x ∈ [0, a] are given by

E(0)
m,1 = x̂×k̂‖

√
2

a A
sin (kx x)ei k‖·x, (4.2.7a)

E(0)
m,2 =

√
(2 − δm0)/a A

k2‖ + (mπ/a)2

[
k‖ x̂ cos(kx x) − i k̂‖

(mπ

a

)
sin(kx x)

]
ei k‖·x, (4.2.7b)

where kx = mπ/a and k‖ = ky ŷ + kz ẑ. We assume the limit of L y/a, Lz/a → ∞.
Themodes in the region x ∈ [a, L] are also given by (4.2.7a, 4.2.7b) after substituting
a → L − a and x → x − a. All modes are normalised over the volume V of each
region of the chamber; the Kronecker delta function in 4.2.7b ensures that the volume
integral for m = 0 is also unity. Writing the perturbed field as

Em,λ = E(0)
m,λ + δαE(1)

m,λ, (4.2.8)

and inserting (4.2.3) and (4.2.8) into Eq. (4.2.6), the wave equation becomes

∇ × ∇ × E(0)
m,λ + δα ∇ × ∇ × E(1)

m,λ

− 1

c2

(
ω(0)2

m,λ + ω(1)2
m,λδα2 + 2δαω(0)

m,λω(1)
m,λ

)
(1 + δα f (x))

(
E(0)

m,λ + δαE(1)
m,λ

)
= 0.

(4.2.9)

This modified wave equation can be simplified using a few elementary tricks. To
begin with, some of the terms must cancel each other. We know that, for empty space

∇ × ∇ × E(0)
m,λ − ω

(0)2
m,λ

c2
E(0)

m,λ = 0. (4.2.10)

Also, the perturbation is small. Retaining only terms up to first order and dividing
by δα, we find that, to first order in δα

∇×∇×E(1)
m,λ − 1

c2

[
2ω(1)

m,λω
(0)
m,λ E(0)

m,λ + ω
(0)2
m,λ E(1)

m,λ + ω
(0)2
m,λ E(0)

m,λ f (x)

]
= 0. (4.2.11)

Exploiting the orthogonality of the modes,

∫
d3x E(0)

m,λ · E(0)∗
p,λ′ = δm,pδλ,λ′ , (4.2.12)
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we proceed bymultiplying (4.2.11) on the left byE(0)∗
p,λ′ and integrating over V (which

could either be the left or right region of Fig. 4.1):

∫
d3x E(0)∗

p,λ′ ·
(
∇ × ∇ × E(1)

m,λ

)
− 1

c2

{
ω

(0)2
m,λ

∫
d3x E(0)∗

p,λ′ · E(1)
m,λ

+ 2ω
(0)
m,λω

(1)
m,λδm,p δλ,λ′

+ ω
(0)2
m,λ

∫
d3x f (x)E(0)∗

p,λ′ · E(0)
m,λ

}
= 0.

(4.2.13)

We consider the case p = m and λ = λ′:
∫

d3x E(0)∗
m,λ ·

(
∇ × ∇ × E(1)

m,λ

)
− 1

c2

{
ω

(0)2
m,λ

∫
d3x E(0)∗

m,λ · E(1)
m,λ

+ 2ω(0)
m,λω

(1)
m,λ

+ω
(0)2
m,λ

∫
d3x f (x)

∣∣∣E(0)
m,λ

∣∣∣
2
}

= 0.

(4.2.14)

Using integration by parts4 and requiring that the fields vanish at infinity, we can
rewrite the first term as

∫
d3x E(0)∗

m,λ .
(
∇ × ∇ × E(1)

m,λ

)
=
∫

d3x E(1)
m,λ.

(
∇ × ∇ × E(0)∗

m,λ

)
. (4.2.15)

The double-curl on the right-hand side of (4.2.15) can be replaced using the wave
equation, changing the term to

ω
(0)2
m,λ

c2

∫
d3x E(0)∗

m,λ .E(1)
m,λ. (4.2.16)

Hence from (4.2.14) to (4.2.16) it follows that the perturbation in the frequency can
be expressed in the simple form

ω(1)
m,λ = −1

2
ω(0)

m,λ

∫

V

∣∣∣E(0)
m,λ

∣∣∣
2

f (x) d3x, (4.2.17)

4 The identity is
∫

�

(∇ × u) · v d3x = −
∫

∂�

(u × n) · v d2x +
∫

�

(∇ × v) · u d3x,
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which is the standard expression for the first order perturbation of the eigenfrequen-
cies of an optical cavity (for examples, see [4, 5]).

4.2.3 Frequency Perturbations

Having obtained the general expression, we deduce the perturbations in the eigen-
frequencies for our particular example by inserting (4.2.7a, 4.2.7b) into (4.2.17),
using the permittivity profile (4.2.2). The piston is symmetrical along the y and z
axis, therefore the integral over volume can be replaced by the cross-sectional area
A, multiplied by an integral over the left or right side of the cavity (i.e. between
x ∈ [0, a] or x ∈ [a, L]).

4.2.3.1 Frequency Perturbation of the First Polarisation

For the first polarisation, λ = 1:

ω(1)
m,1 = −ω

(0)
m,1

2a

a∫

0

[
sin2 (mπx/a) [1 − cos (2πx/L)]

]
dx . (4.2.18)

We note that for m = 0 there is no first-order correction. The integral above can be
separated and determined straightforwardly. For the first integral:

a∫

0

sin2 (mπx/a) dx = a

2
. (4.2.19)

The second integral, containing the additional cosine term, is easily rewritten as

1

2

a∫

0

cos (2πx/L) dx − 1

2

a∫

0

cos (2mπx/a) cos (2πx/L) dx . (4.2.20)

Clearly, the integral in the first term evaluates to

L

2π
sin (2πa/L) . (4.2.21)

Using the cosine angle addition and subtraction identities, the integral in the second
term is identical to

1

2

a∫

0

[cos (2πx (m/a − 1/L)) + cos (2πx (m/a + 1/L))] dx, (4.2.22)
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which is straightforwardly evaluated as

sin
(
2π
(
m − a

L

))

4π
(m

a − 1
L

) + sin
(
2π
(
m + a

L

))

4π
(m

a + 1
L

) . (4.2.23)

Note that, because m is an integer,5

sin
[
2π
(

m ± a

L

)]
= ±sin (2πa/L) . (4.2.24)

It follows from (4.2.20–4.2.24) that the second integral (4.2.20) is

1

2

(
L

2π
sin (2πa/L) − a2

2πL

[
sin (2πa/L)

(a/L)2 − m2

])
. (4.2.25)

Combining the two integrals, we obtain

ω
(1)
m,1 = −ω

(0)
m,λ

1

2a

[
a

2
+ 1

2

(
L

2π
sin (2πa/L) − 1

2

a2

πL

[
sin (2πa/L)

(a/L)2 − m2

])]
.

(4.2.26)

This expression is easily simplified to

ω(1)
m,1 = −1

4
ωL(0)

m,1

[
1 + sin (2πa/L)

2π

Lm2/a

(a/L)2 − m2

]
, (4.2.27)

giving the first order change in the frequency in the left most portion of the piston
for the first polarisation, except when m = 0, in which case ω

L (1)
m,1 = 0.

4.2.3.2 Frequency Perturbation of the Second Polarisation

We now turn our attention to the perturbation in the frequency of the second polari-
sation. For modes m > 0:

ω(1)
m,2 = −ω

(0)
m,2

2a

1

k2‖ + k2x

a∫

0

(
k2‖cos2 (kx x) + k2x sin

2 (kx x)
)
[1 − cos (2πx/L)] dx,

(4.2.28)

5 The identity is sin
[
2π
(
m ± a

L

)] = sin (2πm) cos (2πa/L) ± cos (2πm) sin (2πa/L).
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recalling that kx = mπ/a. Again, we can break the integral up into separate contri-
butions. The first can be stated without calculation:

a∫

0

(
k2‖cos2 (mπx/a) + k2x sin

2 (mπx/a)
)
dx = a

2

(
k2‖ + k2x

)
. (4.2.29)

The second integral is composed of two terms:

k2‖

a∫

0

cos2 (mπx/a) cos (2πx/L) dx + k2x

a∫

0

sin2 (mπx/a) cos (2πx/L) dx .

(4.2.30)
The second term has already been computed (4.2.25). The first term can be decom-
posed into

1

2

a∫

0

cos (2πx/L) dx + 1

2

a∫

0

cos (2mπx/a) cos (2πx/L) dx . (4.2.31)

Both integrals were computed before (4.2.21, 4.2.22). Equation (4.2.31) is therefore
equal to

1

2

(
L

2π
sin (2πa/L) + a2

2πL

[
sin (2πa/L)

(a/L)2 − m2

])
, (4.2.32)

which is the same expression as (4.2.25), but for a change of sign in the second term.
It follows after a little simplification that (4.2.30) is

L

4π
sin (2πa/L)

(
k2x + k2‖

)
+
(

k2‖ − k2x
) a2

4πL

[
sin (2πa/L)

(a/L)2 − m2

]
. (4.2.33)

The total integral in (4.2.28) is now determined. From (4.2.29) to (4.2.33) we obtain

ω(1)
m,2 = −ω(0)

m,2 · 1

2a

[
a

2
− L

4π
sin (2πa/L) − k2‖ − k2x

k2‖ + k2x

a2

4πL

[
sin (2πa/L)

(a/L)2 − m2

]]
.

(4.2.34)

The eigenfrequency of the second polarisation thus gets shifted by

ω
L (1)
m,2 = −1

4
ω

L (0)
m,2

{
1 − sin(2πa/L)

2π

[
L

a
(1 − δm0) +

⎛

⎝
k2‖ − (mπ

a
)2

k2‖ + (mπ
a
)2

⎞

⎠ a/L

(a/L)2 − m2

]}
,

(4.2.35)
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where a Kronecker delta function has been added to give the correct behaviour at
m = 0. After exchanging a → L − a in (4.2.27) and (4.2.35), we obtain the
expressions for the right-hand side of the cavity.

4.2.4 Field Energy Perturbations

The rate of change in energy per unit area due to the inhomogeneity of the medium
is computed through inserting (4.2.27) and (4.2.35) into (4.2.5). This involves per-
forming integrations of the form

I s
m,λ =

∞∫

0

k‖dk‖ωs (1)
m,λ e−ξω

s (0)
m,λ (k‖)/c

, (4.2.36)

where s ∈ {L , R}. The ω
s (1)
m,λ are given by (4.2.27) and (4.2.35), with the s = R

expressions obtained using the substitution a → L − a.

4.2.4.1 Field Energy of the First Polarisation

The eigenfrequency shifts for polarisation λ = 1 depends on k‖ only through ω
s (0)
m,1 ,

i.e. in the same way as the unperturbed eigenfrequencies. For the purpose of ‘book-
keeping’, we will write

ωL(1)
m,1 = ωL(0)

m,1 δωL(1)
m,1 , δωL(1)

m,1 = −1

4

[
1 + sin (2πa/L)

2π

Lm2/a

(a/L)2 − m2

]
.

(4.2.37)

It follows that

Im,1 = δω
(1)
m,1

∞∫

0

k‖dk‖ ω
(0)
m,1e

−ξω
(0)
m,1/c

= c δω
(1)
m,1

∞∫

0

k‖dk‖
√

k2x + k2‖ e
−ξ
√

k2x +k2‖ . (4.2.38)

More concisely:

Im,1 = −c δω(1)
m,1

∂

∂ξ

∞∫

0

k‖dk‖ e
−ξ
√

k2x +k2‖ . (4.2.39)
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Using the identity

k‖e
−ξ
√

k2x +k2‖ = − ∂

∂k‖

⎡

⎣

⎛

⎝

√
k2x + k2‖

ξ
+ 1

ξ2

⎞

⎠ e
−ξ
√

k2x +k2‖

⎤

⎦ (4.2.40)

it follows that ∞∫

0

k‖dk‖ e
−ξ
√

k2x +k2‖ = −
(
1

ξ

∂

∂ξ
− 1

ξ2

)
e−ξkx , (4.2.41)

and we may write

Im,1 = − c

4

[
1 + sin (2πa/L)

2π

Lm2/a

(a/L)2 − m2

]
∂

∂ξ

[(
1

ξ

∂

∂ξ
− 1

ξ2

)
e−ξkx

]
.

(4.2.42)

Properly, there is no contribution for m = 0, therefore the integral (4.2.36) for this
polarisation is

I L
m,1 = − c

4
(1 − δm0)

[
1 + sin (2πa/L)

2π

Lm2/a

(a/L)2 − m2

]

×
(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξmπ/a . (4.2.43)

4.2.4.2 Field Energy of the Second Polarisation

The second polarisation λ = 2 has a slightly more complicated dependence on k‖,
but there is nothing fundamentally different about performing the integrals. Again,
we begin by setting

ω
L(1)
m,2 = ω

L(0)
m,2 δω

L(1)
m,2 (k‖), (4.2.44)

with

δω
L(1)
m,2 (k‖) = −1

4

⎧
⎨

⎩1 − sin (2πa/L)

2π

⎡

⎣ L

a
(1 − δm0) +

k2‖ − (mπ
a
)2

k2‖ + (mπ
a
)2

a/L

(a/L)2 − m2

⎤

⎦

⎫
⎬

⎭ .

(4.2.45)
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As before (4.2.39), we can write the energy integral in the form

Im,2 = −c
∂

∂ξ

∞∫

0

k‖dk‖ δω
(1)
m,2(k‖) e

−ξ
√

k2x +k2‖ , (4.2.46)

only here we must include the perturbation term within the integral. We will separate
(4.2.46) into two integrals and solve them independently:

Im,2 = Im,2a + Im,2b, (4.2.47)

where

Im,2a = c

4

[
1 − L

a
(1 − δm0)

sin (2πa/L)

2π

]
∂

∂ξ

⎧
⎨

⎩

∞∫

0

k‖dk‖ e
−ξ
√

k2x +k2‖

⎫
⎬

⎭ ,

(4.2.48)

Im,2b = − c

4

[
sin (2πa/L)

2π

a/L

(a/L)2 − m2

] ∞∫

0

k‖dk‖

⎧
⎨

⎩
k2‖ − (mπ

a

)2
√

k2‖ + (mπ
a

)2

⎫
⎬

⎭ e
−ξ
√

k2x +k2‖ .

(4.2.49)

The integral in (4.2.48) has already been solved. From (4.2.41), it follows that

Im,2a = − c

4

[
1 − L

a
(1 − δm0)

sin (2πa/L)

2π

] [(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξkx

]
.

(4.2.50)

In solving the integral in (4.2.49), we note that, in analogywith (4.2.40), the integrand
can be written in the form

− ∂

∂k‖

⎡

⎣

⎛

⎝ 2

ξ3
+

2
√

k2x + k2‖
ξ2

−
(

k2x − k2‖
)

ξ

⎞

⎠ e
−ξ
√

k2x +k2‖

⎤

⎦ . (4.2.51)

Thus we determine that

Im,2b = − c

4

[
sin (2πa/L)

2π

a/L

(a/L)2 − m2

](
2

ξ3
− 2

ξ2
∂

∂ξ
− 1

ξ

∂2

∂ξ2

)
e−ξkx . (4.2.52)
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Combining the two terms Im,2 = Im,2a + Im,2b, we obtain the total perturbation in
the contribution of the second polarisation to the ground-state energy:

I L
m,2 = − c

4

{[
1 − sin(2πa/L)

2π

(
L

a
(1 − δm0) + a/L

(a/L)2 − m2

)]

×
(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
+ sin(2πa/L)

2π

×
(

2a/L

(a/L)2 − m2

)
1

ξ

∂2

∂ξ2

}
e−ξmπ/a . (4.2.53)

This can be rewritten in the form

I L
m,2 = − c

4

{[
1 − sin(2πa/L)

2π

(
L

a
+ a/L

(a/L)2 − m2

)]

×
(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξmπ/a

+
[
sin(2πa/L)

2π

(
2a/L

(a/L)2 − m2

)
1

ξ

∂2

∂ξ2

]
e−ξmπ/a

+ δm0
sin(2πa/L)

2πa/L

2

ξ3

}
. (4.2.54)

After substituting a → L − a, one obtains I R
m,1 and I R

m,2.

4.2.4.3 Total Field Energy

The total change in the energy includes the contributions of both polarisations, on
both sides of the cavity:

1

A

∂E

∂α
= �

4π

∂

∂ξ

∑

m

ξ
[
Im,1 + Im,2

]+ {a → L − a}. (4.2.55)

On adding the two contributions we obtain:

Im,1 + Im,2 = − c

4

{[
1 + sin (2πa/L)

2π

Lm2/a

(a/L)2 − m2

](
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξkx

+
[
1 − sin (2πa/L)

2π

(
L

a
+ a/L

(a/L)2 − m2

)]
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×
(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξkx + sin (2πa/L)

2π

×
(

2a/L

(a/L)2 − m2

)
1

ξ

∂2

∂ξ2
e−ξkx +δm0

(
sin(2πa/L)

2πa/L
− 1

)
2

ξ3

}
.

(4.2.56)

This expression can be simplified by factorising, and by noting that

{
Lm2/a

(a/L)2 − m2 − L

a
− a/L

(a/L)2 − m2

}
= −2L

a
, (4.2.57)

leaving

Im,1 + Im,2 = − c

4

{
2

[
1 − sin (2πa/L)

2πa/L

](
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξkx

+ sin (2πa/L)

2π

(
2a/L

(a/L)2 − m2

)
1

ξ

∂2

∂ξ2
e−ξkx − εδm0

}
,

(4.2.58)

where

ε =
(
1 − sin(2πa/L)

2πa/L

)
2

ξ3
. (4.2.59)

Thus the rate of change of the ground-state energy, as the amplitude of δε is increased
from zero to δα, is given by

1

A

∂E

∂α
= − �c

16π

∂

∂ξ

∑

m

ξ

{[
2

[
1 − sin (2πa/L)

2πa/L

](
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
e−ξkx

]

+ sin (2πa/L)

2π

(
2a/L

(a/L)2 − m2

)
1

ξ

∂2

∂ξ2
e−ξkx − εδm0

}
+ {a → L − a}.

(4.2.60)

4.2.5 Removing the Regularisation

Until the regularisation is removed, the energy is cut off arbitrarily and expression
(4.2.60) is not physically informative. Previously, our procedure has been to extract
the free energy of the system—that is, to isolate the mechanical part of the ground-
state energy of the system that depends on the distance between the plates and the
moving piston, taking the parameter ξ → 0 (i.e. removing the cut-off). It is necessary,
then, to formulate (4.2.60) in a way that renders conspicuous its behaviour in this
limit. First we note that
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eξπ/2acosech (ξπ/2a) = 2eξπ/2a

eξπ/2a − e−ξπ/2a
= 2

1 − e−ξπ/a
= 2

∑

m

e−ξmπ/a .

(4.2.61)

Also, for reasons which will become apparent, it is convenient to use the partial
fraction decomposition

1

m2 − (a/L)2
= − L

2a

(
1

m + (a/L)
− 1

m − (a/L)

)
. (4.2.62)

We can then write (4.2.60) in the form

1

A

∂E

∂α
= − �c

16π

∂

∂ξ
ξ

{(
1 − sin (2πa/L)

2πa/L

)(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
eξπ/2acosech (ξπ/2a)

+ sin (2πa/L)

2π

1

ξ

∂2

∂ξ2

∑

m=0

[
e−ξmπ/a

m + (a/L)
− e−ξmπ/a

m − (a/L)

]
− ε

}

+ {a → L − a}. (4.2.63)

We note that, in addition to terms proportional to a geometric series, the resulting
sum over m contains terms of the form,

�(e−ξπ/a, 1, υ) =
∞∑

m=0

e−ξmπ/a

m + υ
. (4.2.64)

The quantity � is known as the Lerch function, and its properties have been investi-
gated elsewhere [6, 7]. Applying the notation of (4.2.64), we can perform the second
summation, with the result that

1

A

δ Ẽ

δα
= − �c

16π

∂

∂ξ
ξ

[(
1 − sin(2πa/L)

2πa/L

)(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
eξπ/2acosech(ξπ/2a)

+ sin (2πa/L)

2π

1

ξ

∂2

∂ξ2

(
�(e−ξπ/a, 1, a/L) − �(e−ξπ/a, 1, −a/L)

)
− ε

]

+ {a → L − a}. (4.2.65)

Again we return to considering the limit ξ → 0, making use of the series expansion
of the Lerch function [7]:

�(z, n, v) zv =
∞∑

m=0
m 	=n−1

{
ζ(n − m, v)

logm(z)

m! + [ψ(n) − ψ(v) − log (−log (z))
] logn−1(z)

(n − 1)!

}
,
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whereψ is the digamma function,6 and ζ(z, q) is theHurwitz zeta function.7 Consider
the � terms in δE1. For z = e−λπ/a and n = 1:

logm(z) = logm(e−λπ/a) = (−1)m
(

λπ

a

)m

,
logn−1(z)

(n − 1)! = 1

0! = 1, (4.2.66)

− log (−log (z)) = −log

(
λπ

a

)
= −log (λ) − log (π/a) , (4.2.67)

Also,ψ(1) is equal to−γ, where γ is Euler’s constant. Inserting (4.2.66) and (4.2.67)
into (4.2.5), we obtain the expression

�(e−ξπ/a, 1, v) = eξπv/a

⎧
⎨

⎩

∞∑

k=1

(−1)kζ(1 − k, v)
(ξπ/a)k

k! + γ − ψ(v) − ln (ξπ/a)

⎫
⎬

⎭ .

(4.2.68)

The Hurwitz zeta function is related to the Bernoulli polynomials when the first
argument is a negative integer [6]:

ζ(−n, v) = − Bn+1(v)

n + 1
, (4.2.69)

where the first three Bernoulli polynomials are

B1(v) = v − 1

2
,

B2(v) = v2 − v + 1

6
,

B3(v) = v3 − 3

2
v2 + 1

2
v.

6 The digamma function is the logarithmic derivative of the gamma function:

ψ(x) = d

dx
ln�(x), �(x) =

∞∫

0

yx−1e−ydy.

7 The Hurwitz zeta function is defined for complex arguments z and q, with Re(z) > 1 and
Re(q) > 1,

ζ(z, q) =
∞∑

n=0

1

(q + n)z
.
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The Lerch function can now be written8

�(e−ξπ/a, 1, v) = −eξπv/a

(
γ + ψ(v) + ln (ξπ/a) +

∞∑

m=0

(−1)m+1 Bm+1(v)

m + 1

(ξπ/a)m+1

(m + 1)!

)
.

(4.2.70)

In the regime of interest—where ξ 
 1 and 0 < υ < 1—the expansion (4.2.70) is
well behaved. From (4.2.70) we find, after neglecting positive powers9 of ξ,

1

ξ

∂2

∂ξ2

[
�(e−ξπ/a, 1, υ) − �(e−ξπ/a, 1,−υ)

]
∼ −2πυ

aξ2

− 2
(πυ

a

)3
log (ξπ/a) − π2υ

a2ξ
[1 + υ(ψ(υ) − ψ(−υ))]

−
(π

a

)3
υ
{
υ2[2(γ − 1) + ψ(υ) + ψ(−υ)] + 1/6

}
. (4.2.71)

Note also that

eξπ/2acosech (ξπ/2a) ≈ 2a

ξπ
+ 1 + 1

3

(
ξπ

2a

)
− 1

45

(
ξπ

2a

)3

. (4.2.72)

Then

(
2

ξ3
− 2

ξ2
∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)
eξπ/2acosech (ξπ/2a) = − π3

180a3 + 12a

πξ4
+ 2

ξ3
. (4.2.73)

Applying (4.2.71) and (4.2.72) to (4.2.65) yields the following expression for the
rate of change of energy with respect to α:

1

A

δ Ẽ

δα
≈ �c

4π

{(
1 − sin(2πa/L)

2πa/L

)(
9a

ξ4π
+ 1

ξ3
+ π3

720a3

)

− sin(2πa/L)

4π

[
π

Lξ2
− π3

L3

[
log(ξπ/a) + 1

]

− π3

2L3 (2(γ − 1) + ψ(a/L) + ψ(−a/L)) − π3

12a2L

]

−
(
1 − sin(2πa/L)

2πa/L

)
1

ξ3

}
+ {a → L − a}. (4.2.74)

8 An examination of [7] may suggest that the expansion (4.2.70) does not apply to the case when the
middle index equals unity. However [6] confirms that it does in fact hold in this case; the expansion
can be simplified to a hypergeometric function, but we do not require this simplification. In addition,
we have verified (4.2.70) by direct numerical evaluation, comparing it to the results of (4.2.64).
9 The reader should recall that we are anticipating the limit ξ → 0.
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The terms in 1/ξ3 are clearly seen to cancel, but the energy expression for the left
side of the cavity contains a contribution which diverges in the limit ξ → 0 given by

(
1 − sin (2πa/L)

2πa/L

)
9a

ξ4π
− sin (2πa/L)

4π

(
π

Lξ2
− π3

L3 log (ξ)

)
. (4.2.75)

However, a similarly diverging contribution to the energy from the right side of the
cavity is obtained by applying the transformation a → L −a to the expression above,
and the remaining divergences are seen to cancel apart from one term 9L/ξ4π. The
total modification to the Casimir energy (4.2.74) containing the contributions from
both sides of the cavity can consequently be rewritten in the form

1

A

δ Ẽ

δα
≈ �c

4π

(
9L

ξ4π
+ δ

)
, (4.2.76)

where δ consists of the remaining finite terms in the Casimir energy:

δ = − 1

4π
sin (2πa/L)

(
− π3

2L3 [ψ(a/L) + ψ(−a/L) − ψ(1 − a/L) − ψ(a/L − 1)]

)

− 1

4π
sin (2πa/L)

(
π3

L3 log (a) − π3

12L

1

a2

)

+ 1

4π
sin (2πa/L)

(
π3

L3 log (L − a) − π3

12L

1

(L − a)2

)

+
(
1 − 1

2π

sin (2πa/L)

a/L

)
π3

720a3
+
(
1 + 1

2π

sin (2πa/L)

1 − a/L

)
π3

720 (L − a)3
. (4.2.77)

This expression for the finite contribution to the Casimir energy can be further simpli-
fied by exploiting the special properties of the digamma function. Using the definition
of the gamma function and integration by parts, it is trivial to show that

�(x + 1) = x�(x), �(x − 1) = �(x)

x − 1
. (4.2.78)

It follows straightforwardly from the definition of the digamma function that

ψ(1 − x) = ψ(−x) − 1

x
, ψ(x − 1) = ψ(x) − 1

x − 1
, (4.2.79)

thus establishing the identity

ψ(x) + ψ(−x) − ψ(1 − x) − ψ(x − 1) ≡ 1

x
+ 1

x − 1
. (4.2.80)
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Applying Eqs. (4.2.80) to (4.2.77) and simplifying, we obtain

δ = π2

4L3 sin (2πa/L)

[
1

2

(
L

a

)
+ 1

12

(
L

a

)2

− 1

360

(
L

a

)4

− log (a)

]

+ π3

720a3 + {a → L − a}. (4.2.81)

The term 9L/ξ4π in (4.2.76) is divergent in the limit ξ → 0, but vanishes in the
force-derivative. It follows that the part of the Casimir energy associated with the
moveable mirror is cutoff-independent: the force on the mirror can be stated exactly
when computed from a summation over modes.

4.2.6 Special Cases

Two special cases are worth noting. First, we can effectively collapse the piston
geometry into a simple cavity by taking L → ∞. All but two terms clearly vanish
in the limit. Noting that

limL→∞L sin (2πa/L) = 2πa, (4.2.82)

we find that the two remaining terms in (4.2.81) cancel and δ = 0. There is no
modification to the Casimir force. This is to be expected: in this limit, we have
effectively removed the perturbation to the profile f (x) → 0 and reduced thematerial
between the mirrors to vacuum.

Secondly, it is also worth noting that when the mirror is positioned exactly at the
centre of the cavity (a = L/2), where the gradient of the peturbation profile is zero,
the rate of change of the energy reduces to the much simpler expression

1

A

δ Ẽ

δα
≈ �c

4π

(
9L

ξ4π
+ π3

720a3 + π3

720(L − a)3

)
. (4.2.83)

4.3 Summary Remarks

4.3.1 The Cut-off Independence of the Casimir Energy

The investigation in this chapter demonstrates that the ground-state energy of an
inhomogeneous system can be determined from a simple energy mode summation,
using standard techniques of regularisation: we found an exact analytic expression
for the Casimir energy of a piston filled with an inhomogeneous medium, in which
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the single diverging part of the energy remains independent of the positions of the
mirrors and does not modify the value of the force. There does not seem to be any
reason to suppose that this pleasing result is a peculiar feature of this profile; it should
be possible to generalise this result for arbitrary profiles (for example, by rewriting
the profile as a Fourier series decomposition, and proceeding along the same lines
as above). This suggests that it should be possible to determine Casimir quantities in
inhomogeneous systems without reference to their microphysical properties, despite
some suggestions to the contrary [3, 8, 9]. Our result is consistent with a numerical
regularisation scheme recently proposed in [10], in which the Casimir force in an
inhomogeneousmedium is determined by forming a Laurent expansion of the energy
(or pressure) in powers of the regularising parameter10 (in our case, in terms of ξ).

4.3.2 Possible Objections

It must be acknowledged, however, that in this investigation we have employed a
rather basic model of a dielectric medium: like Casimir [11], we consider only a
simple energy summation of the field modes between perfect mirrors. We make
the artificial assumption that ε and μ are independent of frequency; the propagation
speed of light is simply varied from point to point, and not as a function of frequency.
Under these conditions, we have found that the Casimir force remains well-behaved
in the limit where the regularisation (cut-off) tends to infinite frequency, and we can
obtain an exact expression for the zero point force that is independent of the choice
of cut-off in the energy summation. Nevertheless, real media are both dispersive
and dissipative, and to properly account for these phenomena, and contend with
any doubts that may arise due to the simplicity of our model, we require Lifshitz
theory [12–15]. It is to this more sophisticated apparatus that we must now turn.
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Chapter 5
The Divergence of the Casimir Stress

I shall be telling this with a sigh... Two roads diverged in a
wood, and I—I took the one less traveled by

Robert Frost, The Road Not Taken

5.1 The Casimir Force in Real Media

In the last chapter, we revisited Casimir’s original problem of a cavity formed by two
perfect mirrors, making a simple modification: an inhomogeneous medium with a
continuously varying permittivity profile was introduced into the cavity. Under these
conditions, we found that the Casimir-energy of the system, construed as a simple
mode summation, can be stated exactly. If this is the case, we might reasonably
expect that a generally finite and physically meaningful result can be obtained for
systems embodying small-scale inhomogeneities, without incorporating additional
information about the microphysical details of their structure.

Nevertheless, Casimir’s model—involving a cavity formed by two perfectly re-
flectingmirrors,whichwe adopted in our investigation—represents a highly idealised
case. There are no perfect mirrors in nature, and real media are both dispersive and
dissipative. To predict the behaviour of a realistic physical system, we require a cal-
culus with the capacity to incorporate these phenomena within its description. As
discussed in Chap. 2, Lifshitz theory offers such an apparatus [1] that fits fairly well
with experimental results [2, 3].

Our aim in this chapter is to repeat our previous thought-experiment, but us-
ing a more realistic model involving dispersive dielectric rather than perfect mir-
rors.1 The case of macroscopic materials embedded within a fluid is of experimental

1 The main results in this chapter were published in [4].
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interest [2], and in this case the Casimir force must be computed using the stress
tensor within the fluid. In this problem, we seek the value of the force when the
fluid is inhomogeneous—for example, when there is a variation in the density of the
fluid.2

5.2 The Regularised Stress in the Continuum Limit

In Chap.2, we derived the general form of the stress tensor from which the Casimir
forces in a system can be determined. The formalism is written in terms of the
electromagnetic Green function, which describes the field produced by charges and
currents within the system (2.2.9), (2.2.10). The ground state of the coupled system
of electromagnetic field and dielectric is one with non–zero current density within
the media [5, 6], consistent with the fluctuation-dissipation theorem [7]. Casimir–
Lifshitz forces arise from the interaction of these ground-state currents.

The stress tensor, however, contains the same divergent contribution that ap-
peared in Casimir’s original work, and must also be regularised. As we discussed
in Sect. 2.3.3, this is typically achieved by subtracting from the total Green func-
tion an auxiliary Green function associated with an infinite homogeneous medium
[6, 8–11]. One can then compute a finite stress tensor for the system that depends on
the dielectric functions of the material at imaginary frequencies. Only then can the
force be derived. Both Casimir’s and Lifshitz’ regularisations give identical results
in the limiting case of a cavity sandwiched between perfectly reflecting mirrors.3

5.2.1 The Stress Tensor for a Rectangular Cavity

The usual expression for the stress tensor, when applied to a medium that is defined
piece–wise along a single axis, is known to be finite.4 To be explicit, for a region of
width a where ε and μ are homogeneous, the value of the regularised stress tensor
at a point x can be written in terms of the reflection coefficients (as opposed to the
Green functions) associated with sending q–polarised (q = s, p) plane waves to the
right (rq R) and to the left (rq L ) of this point [10, 12, 13],

σxx (x) = 2�c
∑

q=s,p

∞∫

0

dκ

2π

∫

R2

d2k‖
(2π)2

w
rq Lrq Re−2aw

1 − rq Lrq Re−2aw
, (5.2.1)

2 For example, sugar dissolved in water under gravity produces an inhomogeneous fluid. This can
easily be verified with a laser—light rays entering the fluid become curved.
3 See Sect. 2.4.2.
4 Significantly, this is not the case for all of the components of the stress tensor: near the boundaries
between distinct homogeneous regions, the lateral components of the stress diverge, but the normal
component remains finite.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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Fig. 5.1 We consider a medium that is inhomogeneous along x , dividing it into N homogeneous
slices of width a. The local value of the regularised stress tensor (5.2.1) is then investigated within
the medium in the limit as a → 0. For the purposes of illustration only the permittivity ε(x) is
shown here. Our analysis holds for both inhomogeneous permittivity and permeability

where w = (n2κ2 + k2‖)1/2, k‖ = |k‖|, and n is the value of the refractive index
in the homogeneous region surrounding x . The reflection coefficients are functions
of the imaginary frequency, ω = icκ , the (real) in–plane wave–vector k‖, and the
material parameters of the media to the right and to the left of the homogeneous
region. This equation is identical to Eq. (2.4.26) which was derived in Sect. 2.4. The
advantage of writing the stress tensor in this form is that the regularisation procedure
of Lifshitz theory is automatically implemented [10]. The contributions to the stress
arise entirely from inhomogeneities in the system. In this chapter we will investigate
the behaviour of (5.2.1) in the limit as the piece–wise definition of the medium
(see Fig. 5.1) becomes a continuous function (a → 0).

5.2.2 An Anticipated Divergence

Beforewe proceedwith amore lengthy argument, let us consider (5.2.1) in a cavity of
width a. This quantity is finite whenwe integrate over k‖ due to the exponential decay
of the field across the cavity at imaginary frequencies, the rate of decay becoming
increasingly rapid as k‖ increases. Indeed, once k‖ becomes sufficiently large then
the field cannot reach the boundaries of the cavity at all and the reflection coefficients
correspondingly tend to zero. However, upon shrinking a, this convergence becomes
slower, a higher value of k‖ being required before the field fails to make a round trip
across the cavity. Given that a continuous medium can be understood as the limit
where a → 0, and the refractive index contrast between the cavity and the walls
becomes infinitesimal, we should ask whether the reflection coefficients vanish fast
enough as a → 0 in order for the stress (5.2.1) to be finite. It seems that they do
not: changing variables in (5.2.1) to ζ = aw, and ξ = ak‖, we find the whole
integral multiplied by a−3. Meanwhile in this limit the reflection coefficients would

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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in general have contributions linear in a, which would still leave a term proportional
to a−1 within the stress tensor: a term which diverges in the continuum limit, where
a → 0. This remains a suspicion, however. In what follows, we will try to make this
argument more precise.

5.3 Transfer Matrices for the Electromagnetic Field

To describe the Casimir stress in an inhomogeneous medium, we will slice it into
N homogeneous portions of equal width a, with Na = L . In order to evaluate this
quantity, we must be able to determine the ‘left’ and ‘right’ reflection coefficients of
both polarisations, rLλ and rRλ (λ = 1, 2), for any slice of the multilayer structure.5

To achieve this, we must first develop a formalism for tracking the behaviour of
the electromagnetic field throughout this structure. In this case, we will deploy the
transfer matrix technique for our analysis of the field [13–16]. In what follows, we
will derive transfer matrices suitable to our inquiry.

5.3.1 Single-Interface Transfer Matrix

We begin by determining the boundary conditions on the electromagnetic field at a
sharp interface between two homogeneous half-spaces.

5.3.1.1 Boundary Conditions for the Electric Field

For the electric field, recalling that ∇ · D = 0, we integrate over a volume such that
the boundary sits between its upper and lower surface, where

∫

V

∇ · D dV = 0. (5.3.1)

We can shrink the walls of the volume so that all the flux of the field enters or leaves
through the top and bottom surfaces, and

∫

V

∇ · D dV =
∫

D · dS =⇒ D1 · x̂
S + D2 · (−x̂
S
) = 0. (5.3.2)

5 This technique may be similarly employed to recover the Green function. See Appendix C.
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This determines continuity conditions at the boundary for the normal component
of D:

D1 · x̂ = D2 · x̂, (5.3.3)

where x̂ is the vector normal to the interface.We can derive conditions for the tangen-
tial component of the electric field by applying Faraday’s law to a small rectangular
loop positioned across the boundary:

∫

S

∇ × E dS = − ∂

∂t

∫
B dS. (5.3.4)

Again, we consider the limiting case where the sides are permitted to contract to zero
length, preventing any magnetic flux from cutting the surface, so that

∫

S

∇ × E dS =
∮

E dl = 0 =⇒
b∫

a

E1 · dl +
d∫

c

E2 · dl = 0

=⇒ E1 · 
l + E2 · (−
l) = 0. (5.3.5)

This determines continuity conditions at the boundary for the tangential component
of E:

E1 · t̂ = E2 · t̂, (5.3.6)

where t̂ is the vector parallel to the interface.

5.3.1.2 Boundary Conditions for the Magnetic Field

We proceed similarly for the magnetic field. Recalling that ∇ · B = 0, we find that

B1 · x̂ = B2 · x̂. (5.3.7)

Recalling that ∇ × H = ∂D
∂t , we also determine that

H1 · t̂ = H2 · t̂. (5.3.8)

In summary, the boundary conditions for the electromagnetic field at an interface
between two planar media are such that

1. the in-plane components6 of E and H are continuous across the interface.
2. the normal components7 of D and B are continuous across the interface.

6 i.e. the components that lie in a plane parallel to the plane of the interface, and therefore orthogonal
to the plane of incidence.
7 i.e. the components that are normal to the interface.
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Fig. 5.2 Reflection in the
plane. The incident
wave-vector k1 (the yellow
arrow) strikes an interface
and is partially reflected. The
incident and reflected
wave-vectors both lie in the
plane of incidence. Two
polarisations are depicted: the
blue arrows depict the
polarisation in which the
electric field lies parallel to
the plane of incidence; the red
arrows depict the polarisation
that lies orthogonal to it

5.3.1.3 s and p Polarisations

We consider two polarisations of the electromagnetic field separately. Convention-
ally, we separate the field into one polarisation in which the waves have electric field
orthogonal to the plane of incidence (the plane of the incident and reflected waves),
and another in which the electric field lies parallel to it (i.e. the magnetic field is
orthogonal to the plane of incidence). We refer to these as s and p polarisations
respectively. Because of the linearity of Maxwell’s equations, an arbitrary sum of
the two polarisations is the solution for a general plane wave (Fig. 5.2).

5.3.1.4 Boundary Conditions Applied to the Electric Field

Consider a single interface between twomedia:medium1{ε1, μ1, n1 = √
ε1μ1} and

medium 2 {ε2, μ2, n2 = √
ε2μ2}. Real media are dispersive,8 so the permittivities

and permeabilities are functions of the frequency ω. We can write an expression for
the field in medium 1, for a given frequency ω, in terms of the s and p polarisations
for waves propagating forwards and backwards:

E1 = E (+)
1s (x)e(+)

1s + E (−)
1s (x)e(−)

1s + E (+)
1p (x)e(+)

1p + E (−)
1p (x)e(−)

1p . (5.3.9)

8 Dissipation is incorporated by including an imaginary component in the refractive index.
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The orientations of the s and p waves are given by the unit vectors

e(±)
1s = x̂ × k̂‖, (5.3.10a)

e(±)
1p = k̂1

(±) × e(±)
1s , (5.3.10b)

where k(±)
1 = ±k1x x̂ + k‖, x̂ is a unit vector normal to the interface, k1x is the

component of the wave-vector normal to the interface, and k̂‖ = k‖/k‖ defines a
plane parallel to the interface.9 Applying the continuity of the in-plane part of the
electric field across the two interfaces,10

E1 · e(±)
1s = E2 · e(±)

2s , (5.3.11)

E1 · k̂‖ = E2 · k̂‖, (5.3.12)

yields the equations

E (+)
1s + E (−)

1s = E (+)
2s + E (−)

2s , (5.3.13)

k1x

n1

[
E (+)
1p − E (−)

1p

]
= k2x

n2

[
E (+)
2p − E (−)

2p

]
, (5.3.14)

having noted11 that

e(±)
1p · e(±)

1s = 0, k̂‖ · e(±)
1s = 0, k̂‖ · e(±)

1p = ∓ck1x

n1ω
. (5.3.15)

Then, applying continuity for the normal component of the displacement field,

D1 · x̂ = D2 · x̂, (5.3.16)

we obtain
ε1

n1

[
E (+)
1p + E (−)

1p

]
= ε2

n2

[
E (+)
2p + E (−)

2p

]
, (5.3.17)

having noted12 that

9 By definition, a polarisation aligned with e(±)
1s excludes any normal component that crosses

the interface; the electric field is therefore orthogonal to the plane of incidence. By definition,
a polarisation aligned with e(±)

1p lies in an orthogonal plane to any polarisation aligned with e(±)
1s .

10 This involves two projections, as there are two orthogonal polarisations that we wish to treat
separately, each of which contains a component in the plane parallel to the interface.
11 For the third identity:

k̂‖ · e(±)
1p = k̂‖ ·

(
k̂1

(±) × e(±)
1s

)
= k‖

k
·
{(±k1x x + k‖

)×
(

x̂ × k̂‖
)}

= ∓ k1x

k
= ∓ ck1x

n1ω
.

12 For this identity:
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x̂ · e(±)
1p = ck‖

n1ω
. (5.3.18)

There is no similar contribution for the s component, whose field is orthogonal to
the plane of incidence, x̂ · e(±)

1s = 0, and therefore has no normal component across
the interface.

5.3.1.5 Boundary Conditions Applied to the Magnetic Field

We determine the magnetic field via

iωB1 = ∇ × E1, (5.3.19)

which implies

B1 = n1

c

[
E (+)
1s (x)e(+)

1p + E (−)
1s (x)e(−)

1p − E (+)
1p (x)e(+)

1s − E (−)
1p (x)e(−)

1s

]
. (5.3.20)

The continuity of k‖ · H gives the boundary condition

k1x

μ1

[
E (+)
1s − E (−)

1s

]
= k2x

μ2

[
E (+)
2s − E (−)

2s

]
. (5.3.21)

Applying the remaining conditions on the magnetic field does not generate any new
equations.

5.3.1.6 The Component Transfer Matrices

From the four equations obtained by applying the boundary conditions, we can form
the matrix equation

⎛

⎜⎜⎜⎝

1 1 0 0
k1x
μ1

− k1x
μ1

0 0
0 0 ε1

n1
ε1
n1

0 0 k1x
n1

− k1x
n1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

E (+)
1s

E (−)
1s

E (+)
1p

E (−)
1p

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1 1 0 0
k2x
μ2

− k2x
μ2

0 0
0 0 ε2

n2
ε2
n2

0 0 k2x
n2

− k2x
n2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

E (+)
2s

E (−)
2s

E (+)
2p

E (−)
2p

⎞

⎟⎟⎟⎠ . (5.3.22)

Clearly, the s and p polarisations are not coupled and can be treated separately. For
the s polarisation

x̂ · e(±)
1p = 1

k1
x̂ ·
{
±k1x x × e(±)

1s + k‖ ×
(

x̂ × k̂‖
)}

= k‖
k1

x̂ ·
{

k̂‖ ×
(

x̂ × k̂‖
)}

= ck‖
n1ω

.
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(
1 1

k1x
μ1

− k1x
μ1

)(
E (+)
1s

E (−)
1s

)
=
(

1 1
k2x
μ2

− k2x
μ2

)(
E (+)
2s

E (−)
2s

)
. (5.3.23)

Rewriting this expression, to express the field quantities on the right in terms of the
field quantities on the left, we obtain:

(
E (+)
2s

E (−)
2s

)
= μ2

2k2x

(
k2x
μ2

+ k1x
μ1

k2x
μ2

− k1x
μ1

k2x
μ2

− k1x
μ1

k2x
μ2

+ k1x
μ1

)(
E (+)
1s

E (−)
1s

)
.

Similarly, for the p polarisation:

(
E (+)
2p

E (−)
2p

)
= n2

2n1ε2k2x

(
ε1k2x + ε2k1x ε1k2x − ε2k1x

ε1k2x − ε2k1x ε1k2x + ε2k1x

)(
E (+)
1p

E (−)
1p

)
.

Thus for an arbitrary interface, composed of a homogeneous medium on one side
with dielectric properties εl andμl , and a second homogeneous medium on the other
side with properties εr andμr , it follows that the s and p transfer matrices connecting
the field across the boundary between the two media are

ts(l, r) = 1

2μl kxr

(
μl kxr + μr kxl μl kx r − μr kxl

μl kxr − μr kxl μl kx r + μr kxl

)
, (5.3.24)

tp(l, r) = nr

2nlεr kxr

(
εl kxr + εr kxl εl kxr − εr kxl

εl kxr − ε2kxl εl kxr + εr kxl

)
. (5.3.25)

We will be considering a stack of homogeneous media of equal width a, indexed
by the parameter m. Consequently, we also require the transfer matrix associated
with the propagation of a field through a homogeneous slice, in which the field
accumulates a phase of eikxma :

�(m) =
(

eikxma 0
0 e−ikxma

)
. (5.3.26)

5.3.1.7 Imaginary Frequencies

In order to compute the Casimir stress or force integrals, we work in imaginary
frequencies: ω → icκ . This transforms the wave vector:

ω2 = c2

n2 k2 = c2

n2

(
k2x + k2‖

)
=⇒ kx =

√
n2ω2

c2
− k2‖ → i

√
n2κ2 + k2‖ .

(5.3.27)
We then denote the imaginary wave number
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wm =
√

n2
mκ2 + k2‖ . (5.3.28)

At imaginary frequency, the transfer matrices are

ts(l, r) = 1

2μlwr

(
μlwr + μrwl μlwr − μrwl

μlwr − μrwl μlwr + μrwl

)
, (5.3.29a)

tp(l, r) = nr

2nlεrwr

(
εlwr + εrwl εlwr − εrwl

εlwr − εrwl εlwr + εrwl

)
. (5.3.29b)

The permittivities ε and permeabilitiesμ are now evaluated at imaginary frequencies:

ε(ω) → ε(iκ), μ(ω) → μ(iκ), n(ω) → n(iκ). (5.3.30)

These quantities are obtained from the dielectric properties for real frequencies by
Hilbert transformation, but remain real-valued on the imaginary axis. The propaga-
tion matrix transforms to

�(m) =
(

e−wma 0
0 ewma

)
, (5.3.31)

which is also real.

5.3.2 Multilayer Transfer Matrix and Reflection Coefficients

Our intention is to track the properties of the electromagnetic field through an inho-
mogeneous medium, by modelling the medium as a stack of homogeneous slices.
To this end, we seek to construct ‘multilayer transfer matrices’ that track wave prop-
agation across multiple interfaces:

Tλ(l, r) =
r−1∏

m=l

�(m + 1)tλ(m, m + 1). (5.3.32)

This object connects the field emerging from the far right-hand side of a stack of
homogeneous slices to the incident field impinging upon the stack in slice l:

(
E (+)

rλ

E (−)
rλ

)
= Tλ(l, r)

(
E (+)

lλ

E (−)
lλ

)
=
(

T11 T12
T21 T22

)(
E (+)

lλ

E (−)
lλ

)
. (5.3.33)

We can now define the reflection coefficients for an interface composed of multiple
slices. If we imagine a wave of unit amplitude incident from the left onto a planar
object represented by T, then the field emerging on the far right, into empty or
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homogeneous space, will consist only of right-propagating waves. It follows that:

(
T11 T12
T21 T22

)(
1
rr

)
=
(

tr
0

)
, (5.3.34)

where tr is the amplitude of thewave emerging on the right-hand side of this structure,
and rr is the amplitude of the wave reflected back. This reflection coefficient is
completely determined by the details of the structure contained in the total transfer
matrix:

T21 + T22rr = 0 =⇒ rr = −T21
T22

. (5.3.35)

Similarly, for a wave incident from the right:

(
T11 T12
T21 T22

)(
0
tl

)
=
(

rl

1

)
. (5.3.36)

The reflection coefficient is again determined completely by the total transfer matrix.

T22tl = 1 =⇒ tl = 1/T22 =⇒ rl = T12
T22

. (5.3.37)

5.3.3 Approximate Transfer Matrices for an Inhomogeneous
Medium

5.3.3.1 Restricted Regime

The Casimir stress within a multilayer dielectric stack, for a given slice of the struc-
ture, may be expressed in terms of its reflection coefficients (5.2.1). However, numer-
ical computations13 suggest that the stress of an inhomogeneous structure, modelled
as a stack of homogeneous slices, diverges as the number of slices increases (i.e. as
we approach the continuum limit, in which the slicing becomes infinitesimally thin).
The suspicion is that the divergence takes place in the integral over k‖. In order to
get an analytic fix on this divergence, we restrict our attention to the regime in which
the in-plane wave vector is large in comparison to the refractive index multiplied by
the frequency, i.e. where nκ/k‖ 	 1. This extends from some finite value of k‖ to
infinity. Under these conditions:

wm =
√

n2κ2 + k2‖ = k‖

√
1 + n2κ2

k2‖
= k‖

(
1 + 1

2

n2κ2

k2‖
+ · · ·

)
∼ k‖, (5.3.38)

13 See Sect. 5.4.2.
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i.e. the quantitywm becomes constant throughout the structure. The transfer matrices
(5.3.29a, 5.3.29b) can also be simplified:

ts(l, r) ∼ 1

2μl

(
μl + μr μl − μr

μl − μr μl + μr

)
, (5.3.39a)

tp(l, r) ∼ nr

2nlεr

(
εl + εr εl − εr

εl − εr εl + εr

)
. (5.3.39b)

These expressions become increasingly exact as k‖ increases. We shall refer to this
approximation as the ‘high wavenumber regime’ (hw-regime). Consider an inhomo-
geneous medium situated in the region x ∈ [0, L]. To describe the Casimir stress in
this medium, we will slice it into N portions of width a, with Na = L , indexed by
m. The slices m = 0 and m = N + 1 contain free space. Restricting ourselves to the
hw-regime, we first rewrite the transfer matrices (5.3.39a, 5.3.39b):

ts(m, m + 1) =
(
1 + 
μm

2μm
−
μm

2μm

−
μm
2μm

1 + 
μm
2μm

)
, (5.3.40a)

tp(m, m + 1) = nm+1εm

nmεm+1

(
1 + 
εm

2εm
−
εm

2εm

−
εm
2εm

1 + 
εm
2εm

)
, (5.3.40b)

where

μm = μm+1 − μm, 
εm = εm+1 − εm . (5.3.41)

For propagation between two slices, we first cross a boundary, then propagate a
distance a. We may define a composite transfer matrix for this process, beginning
with the s polarisation:

τs(m + 1) = �(m + 1) ts(m, m + 1) =
(

e−k‖a 0
0 ek‖a

)(
1 + 
μm

2μm
−
μm

2μm

−
μm
2μm

1 + 
μm
2μm

)
.

Multiplying the twomatrices, and separating the terms, the composite transfer matrix
can be cast in the form
⎛

⎝

{
1 + 
μm

2μm

}
e−k‖a −
μm

2μm
e−k‖a

−
μm
2μm

ek‖a
{
1 + 
μm

2μm

}
ek‖a

⎞

⎠ =
(

e−k‖a 0
0 ek‖a

)
+ 
μm

2μm

(
e−k‖a −e−k‖a

−ek‖a ek‖a

)
.

(5.3.42)

Proceeding similarly for the p polarised waves, the composite transfer matrices for
the two polarisations can be conveniently rewritten in the form



5.3 Transfer Matrices for the Electromagnetic Field 103

τs(m + 1) = α + 
μm

2μm
β,

τp(m + 1) = nm+1εm

nmεm+1

(
α + 
εm

2εm
β

)
, (5.3.43)

where

α =
(

e−k‖a 0
0 ek‖a

)
, β =

(
e−k‖a −e−k‖a

−ek‖a ek‖a

)
. (5.3.44)

5.3.3.2 Approximating the Transfer Matrices

Besides working within the hw-regime, wemay simplify the algebra further by limit-
ing our enquiry to the general case of a weakly inhomogeneous medium. The optical
profile of the medium under consideration remains arbitrary; we simply restrict our-
selves either to the case of an inhomogeneity that is small in magnitude but fairly
rapid in variation, or fairly large in magnitude but only slowly varying. Reflections
are the result of inhomogeneities. In the case under consideration, we expect the
reflection coefficients and the Casimir stress to be small. If there is a divergence in
the Casimir stress for even a weakly varying (that is, a weakly reflective) medium,
there is every reason to expect a divergence in a strongly varying (strongly reflective)
medium.

First, to calculate the stress in a cell l, we require the reflection coefficients of
the cell boundaries, rl and rr , and therefore the transfer matrices associated with
propagation of waves from cell l throughout the multilayer stack, travelling to the
left and to the right. We shall consider a configuration for N + 1 cells. Consider the
left transfer matrix for the s polarisation:

TLs =
l∏

m=1

τs (m) =
l∏

m=1

(
α + 
μm−1

2μm−1
β

)

=
(

α + 
μl−1

2μl−1
β

)(
α + 
μl−2

2μl−2
β

)(
α + 
μl−3

2μl−3
β

)
+ · · ·
(5.3.45)

It is not possible to analytically evaluate (5.3.45) unless we make the second
approximation we alluded to: it is equivalent to the Born approximation in quantum
mechanics, where we assume that scattering is weak [15]. In electromagnetism,
this means that the properties of the medium must change slowly as a function of
position. Products of the transfer matrices can then be truncated to first order in 
ε

and 
μ [14]. This approximation is quite well suited to our case, for it is the case
where the value of the stress ought to be minimal. Thus for a weakly inhomogeneous
medium we may neglect terms that are higher than first-order in 
μi and 
εi . It
follows that
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TLs ∼ αl + 
μl−1

2μl−1
βαl−1 + 
μl−2

2μl−2
αβαl−2 + 
μl−3

2μl−3
α2βαl−3 + · · ·

= αl +
l∑

m=1


μl−m

2μl−m
αm−1βαl−m . (5.3.46)

It is convenient to reverse and reindex the sum:

TLs ∼ αl +
l−1∑

m=0


μm

2μm
αl−m−1βαm . (5.3.47)

The matrices in the final lines are then

αl =
(

e−k‖la 0
0 ek‖la

)
, (5.3.48a)

αl−m−1βαm =
(

e−k‖la −ek‖(2m−l)a

−ek‖(l−2m)a ek‖la

)
. (5.3.48b)

Thus the transfer matrix can be written

TLs =
⎛

⎜⎝

[
1 +∑l−1

m=0

μm
2μm

]
e−k‖la −∑l−1

m=0

μm
2μm

e−k‖(l−2m)a

−∑l−1
m=0


μm
2μm

ek‖(l−2m)a
[
1 +∑l−1

m=0

μm
2μm

]
ek‖la

⎞

⎟⎠ . (5.3.49)

For the transfer matrix associated with propagation through the right-hand side of
the structure:

TRs =
N+1∏

m=l+1

τs (m) =
N+1∏

m=l+1

(
α + 
μm−1

2μm−1
β

)

=
(

α + 
μN

2μN
β

)(
α + 
μN−1

2μN−1
β

)(
α + 
μN−2

2μN−2
β

)
+ · · ·

(5.3.50)

We apply the same approximation:

TRs ∼ αN+1−l + 
μN

2μN
βαN−l + 
μN−1

2μN−1
αβαN−l−1 + 
μN−2

2μN−2
α2βαN−l−2 + · · ·

= αN+1−l +
N∑

m=l


μm

2μm
αN−mβαm−l . (5.3.51)

The matrices in the final lines are
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αN+1−l =
(

e−k‖(N+1−l)a 0
0 ek‖(N+1−l)a

)
, (5.3.52a)

αN−mβαm−l =
(

e−k‖(N−l+1)a −e−k‖(N+l+1−2m)a

−e−k‖(N+l+1−2m)a ek‖(N−l+1)a

)
. (5.3.52b)

Thus the right-transfer matrix for s polarised light is

TRs =
⎛

⎝

[
1 +∑N

m=1

μm
2μm

]
e−k‖(N−l+1)a −∑N

m=1

μm
2μm

e−k‖(N+l+1−2m)a

−∑N
m=1


μm
2μm

ek‖(N+l+1−2m)a
[
1 +∑N

m=1

μm
2μm

]
ek‖(N−l+1)a

⎞

⎠ .

(5.3.53)

The form of TLp and TRp, for the p polarisation, can be determined without fur-
ther calculation from their s counterparts by simply substituting permeability for
permittivity and multiplying by the prefactor

nN+1εl

nlεN+1
. (5.3.54)

We can now state the reflection coefficients, applying the same ratios of the elements
of the appropriate transfer matrix as before (5.3.35), (5.3.37). For reflection from
the left of s polarised light, we obtain the coefficient

rLs(l) = −
∑l−1

m=0

μm
2μm

e−k‖(l−2m)a

[
1 +∑l−1

m=0

μm
2μm

]
ek‖la

= −
∑l−1

m=0

μm
μm

e−2k‖(l−m)a

(
2 +∑l−1

j=0

μ j
μ j

) . (5.3.55)

For reflection from the right of s polarised light, we obtain

rRs(l) =
∑N

m=1

μm
2μm

ek‖(N+l+1−2m)a

[
1 +∑N

m=1

μm
2μm

]
ek‖(N−l+1)a

=
∑N

m=1

μm
μm

e−2k‖(m−l)a

[
2 +∑N

m=1

μm
μm

] . (5.3.56)

The reflection coefficients of the p polarisation can be recovered by replacing the
permeabilities with the permittivities. It is convenient to introduce into all the reflec-
tion coefficients an additional phase factor, such that we can associate the reflection
coefficients for each slice with a point xl at the centre of the slice. The complete set
of reflection coefficients are then given as follows: for reflection of s and p polarised
light from the left,
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rLs(xl) = −
∑l−1

m=0

μm
μm

e−2k‖(l−m−1/2)a

(
2 +∑l−1

m=0

μm
μm

) ,

rLp(xl) = −
∑l−1

m=0

εm
εm

e−2k‖(l−m−1/2)a

(
2 +∑l−1

m=0

εm
εm

) ; (5.3.57)

for reflection from the right,

rRs(xl) =
∑N

m=l

μm
μm

e−2k‖(m−l+1/2)a

(
2 +∑N

m=l

μm
μm

) ,

rRp(xl) =
∑N

m=l

εm
εm

e−2k‖(m−l+1/2)a

(
2 +∑N

m=l

εm
εm

) . (5.3.58)

5.4 The Casimir Stress in an Inhomogeneous Medium

To recapitulate briefly, we have approximated the inhomogeneousmedium as a series
of N homogeneous strips of width a (see Fig. 5.1). We have employed the transfer
matrix technique for our analysis of the field [13–16], with the field in strip j + 1
being related to that in j by

Eq( j + 1) = tq( j + 1) · Eq( j), (5.4.1)

where the index q labels the polarization as in (5.2.1), and tq( j + 1) is the transfer
matrix relating the field on the far right of slice j to that on the far right of slice
j + 1. In (6.2.11) the electric field amplitude, Eq is written as a two element vector
containing the right (+) and left (−) going parts,

Eq( j) =
(

E (+)
q ( j)

E (−)
q ( j)

)
. (5.4.2)

We number the transfer matrices in (6.2.11) from 1 to N +1, with ε0 and εN+1 equal
to the vacuum permittivity, and μ0 and μN+1 the vacuum permeability. In each of
these slices tq is given by the usual expression for the transfer matrix in piece–
wise homogeneous media (e.g. [14, 16]). For the imaginary frequencies, ω/c =
iκ , encountered within (5.2.1) the x–directed wave–vector in the j th slice is also
imaginary, k j = iw j , where, w j = (n2

jκ
2 + k2‖)1/2. The limit of N → ∞ and

a → 0 will be taken in the final step of the calculation.
Our object is to apply this formalism to determine whether the stress tensor (5.2.1)

remains finite when the properties of the medium are represented by continuous

http://dx.doi.org/10.1007/978-3-319-09315-4_6
http://dx.doi.org/10.1007/978-3-319-09315-4_6
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functions of position. We suspect that it is not: a divergence of (5.2.1) is anticipated
in the integral over k‖ = |k‖|. Physically—considering the allowed modes on the
real frequency axis—we can picture this divergent contribution arising due to waves
of high k‖ undergoing reflections from the inhomogeneity of the medium. As k‖ is
increased, these waves contribute ever more to the local value of the stress tensor,
when presumably in reality they should not be supported by themedium at all. For the
purpose of identifying this anticipated divergence, we have restricted our attention
to the hw-regime of the integrand in (5.2.1), where the in–plane wave–vector is large
in comparison to the ‘refractive index’ multiplied by the ‘frequency’, n jκ/k‖ 	 1.

5.4.1 The High-Wavenumber Divergence

The integral for the Casimir stress, at a position xl within the multilayer structure,
can now be stated in terms of the quantities we have derived:

σxx (xl) = 2�c
∑

λ=s,p

∞∫

0

dκ

2π

∫

R2

d2k‖
(2π)2

w
rLλ(xl)rRλ(xl)e−2aw

1 − rLλ(xl)rRλ(xl)e−2aw
, (5.4.3)

where
w =

√
n(xl , iκ)2κ2 + k2‖, k‖ = ∣∣k‖

∣∣ , (5.4.4)

and the reflection coefficients rsλ are defined by (5.3.57), (5.3.58). n(iκ) is the refrac-
tive index of slice l evaluated at imaginary frequencies. To examine the behaviour of
the stress in the integral over k‖ we evaluate the integrand above at fixed κ (that is,
for a fixed frequency) and therefore at n(xl) = n(xl , iκ). A semi-infinite part of the
integral over k‖ is taken in the regime of high wave numbers [K ,∞), wherew ∼ k‖.
The quantity we wish to analyse is

I =
∑

λ=s,p

∞∫

K

dky

2π

∞∫

K

dkz

2π
k‖

rLλrRλe−2k‖a

1 − rLλrRλe−2k‖a
. (5.4.5)

It is convenient to rewrite the integral in polar coordinates:

∑

λ=s,p

2π∫

0

dθ

2π

∞∫

K

k2‖dk‖
2π

rLλrRλe−2k‖a

1 − rLλrRλe−2k‖a
. (5.4.6)

If this quantity is divergent, then the stress integral as a whole is divergent. This
is true regardless of the absorbing properties of the medium, or its frequency dis-
persion profile. We can expand the denominator in the expression above in a series of
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ascendingpowers of the reflection coefficients, on the assumption that rLλrRλe−2k‖a< 1,
so that this sum converges for all a and all k‖:

rLλrRλe−2k‖a
(
1 − rLλrRλe−2k‖a

)−1

= rLλrRλe−2k‖a
[
1 + rLλrRλe−2k‖a +

(
rLλrRλe−2k‖a

)2 + · · ·
]

,

(5.4.7)

which can be written more concisely as

∑

n=0

(
rLλrRλe−2k‖a

)n+1
. (5.4.8)

We may now rewrite I and introduce the quantity Iλn :

I = 1

2π

∞∑

n=0

∑

λ=s,p

Iλn, Iλn =
∞∫

K

k2‖dk‖ (rLλrRλ)
n+1 e−2(n+1)k‖a . (5.4.9)

Consider the quantity Is0 = ∫∞
K k2‖dk‖rLsrRse−2k‖a . First, we insert the expressions

for the reflection coefficients:

Is0 = −
∞∫

K

k2‖dk‖

∑l−1
m=0

∑N
m′=l


μm
μm′
μmμm′ e−2k‖(m′−m+1)a

(
2 +∑l−1

m=0

μm
μm

) (
2 +∑N

m′=l

μm′
μm′

) . (5.4.10)

The integral over k‖ can now be evaluated. It is an integral of the form14

∫
x2ecxdx = ∂2

∂c2

∫
ecxdx = ∂2

∂c2

[
1

c
ecx
]

= ecx
(

x2

c
− 2x

c2
+ 2

c3

)
. (5.4.11)

Putting c = −2
(
m′ − m

)
a, and integrating over k‖, we obtain

∞∫

K

dk‖k2‖e−2k‖(m′−m+1)a = K0 e−2K(m′−m+1)a (5.4.12)

where

K0 =
(

K 2

2(m′ − m + 1)a
+ 2K

4(m′ − m + 1)2a2 + 2

8(m′ − m + 1)3a3

)
. (5.4.13)

14 We have set the constant of integration to zero.
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Thus the integral Is0 evaluates as

Is0 = −
∑l−1

m=0
∑N

m′=l

μm
μm′

μmμm′ K0 e−2K(m′−m+1)a

(
2 +∑l−1

m=0

μm
μm

) (
2 +∑N

m′=l

μm′
μm′

) . (5.4.14)

In fact, this quantity can be made arbitrarily large by slicing the medium more
finely—that is, by decreasing the width of each slice by increasing the number of
slices. To see this, we consider the quantity Is0 in the continuum limit. First, we
rewrite the sums as integrals:

l−1∑

m=0

→
x∫

0

dx1,
N∑

m′=l

→
L∫

x

dx2. (5.4.15)

The terms involving the permeabilities can be reexpressed as logarithms.


μm

μm
= μm+1 − μm

μm
→ 1

μ(x1)

d

dx1
μ(x1) = d

dx1
ln [μ(x1)] , (5.4.16)

Similarly,

μm′

μm′
→ d

dx2
ln [μ(x2)] . (5.4.17)

The sums on the denominator of (5.4.14) becomes integrals that can be straightfor-
wardly evaluated:

x∫

0

dx1
d

dx1
ln [μ(x1)] = ln [μ(x)] − ln [μ(0)] ,

L∫

x

dx2
d

dx2
ln [μ(x2)] = ln [μ(L)] − ln [μ(x)] . (5.4.18)

Since the medium is situated in a vacuum, ln [μ(0)] = ln [μ(L)] = ln 1 = 0. Finally,
we arrive at an expression for (5.4.14) in the continuum limit: Is0 is equal to

− (2 + ln [μ(x1)])
−1 (2 − ln [μ(x2)])

−1

x∫

0

dx1

L∫

x

dx2
d

dx1
ln [μ(x1)]

d

dx2
ln [μ(x2)]

(
K 2

2(x2 − x1)a
+ 2K

4(x2 − x1)2a2 + 2

8(x2 − x1)3a3

)
e−2K (x2−x1)a .

(5.4.19)
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This expression clearly diverges. It therefore seems that there is no finite
continuum limit of the regularised stress tensor (5.2.1). Including the additional
terms in the series (5.4.9) will not affect this result [4]. Whilst these contributions
diverge in a similar manner, they represent higher powers of the derivatives of ε

and μ—terms that vary quite independently as the spatial dependence of ε and μ is
changed, and therefore cannot be expected to cancel in general. As the remainder of
the integral over k‖ is finite, we conclude that the whole integral diverges as a → 0.
Consequently (5.2.1) diverges everywhere within an inhomogeneous medium de-
scribed by ε and μ that are continuous functions of position. This is independent of
how these quantities depend on imaginary frequency.

5.4.2 A Numerical Illustration

The divergence demonstrated analytically above was first spotted numerically when
attempting to compute a stress profile for a system similar to the one in [9], and
the results of these numerical computations serve to illustrate the argument. For the
sake of simplicity we consider an impedance-matched system ε = μ = n with the
refractive index profile

n(x) =

⎧
⎪⎨

⎪⎩

3 x ≤ 0,

3 e−x 0 < x < Log 3,

1 x ≥ Log 3.

(5.4.20)

The system contains an imhomogeneous region between x = 0 and x = Log 3. In
order to investigate the properties of this system using the transfer matrix technique
described earlier (but dispensing with the approximations introduced in Sect. 5.3.3),
we divide the inhomogeneous region into N homogeneous pieces (see Fig. 5.3), and
determine the left and right reflection coefficientswithin each piece. It is then possible

Fig. 5.3 The continuous
refractive index profile of the
system, and a piece–wise
approximation using 20
homogeneous slices
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to calculate the local value of the regularised stress. The formula for the stress (5.2.1)
can be rewritten more simply in this case [10], noting that the coefficients depend
only on the magnitude of the wave vector components, and not on the angle between
them15:

σ = �c

π2

∞∫

0

∞∫

0

k‖w
rLrRe−2aw

1 − rLrRe−2aw
dk‖ dκ. (5.4.21)

As N becomes large (i.e. as the cavity width a becomes small), the approximation
becomes increasingly accurate. Prima facie, there should be little to distinguish the
physics of the case N = 400 from the case N = 800, as both approximations of
the continuum case are now very smooth. Nevertheless, as Fig. 5.4 shows, the stress
(though regularised) increases markedly, and it continues to grow as more slices are
added. Why is this happening? Plots of the integrand of the stress (6.2.7), where
the wave number k‖ and the number of slices N are allowed to vary, show that the
integral falls off less and less rapidly with k‖ as N is increased (Fig. 5.5).

Fig. 5.4 The medium, inhomogeneous between x = 0 and x = Log 3, is divided into 100, 200,
400 and 800 homogeneous slices. The local absolute value of the regularised stress tensor (6.2.7)—
normalised in units of �c/π2—is plotted for each case at a given position x . The stress increases
as the number of divisions increases

15 We also note that the electric and magnetic coefficients are equal, due to impedance-matching,
and hence need not be referred to separately.

http://dx.doi.org/10.1007/978-3-319-09315-4_6
http://dx.doi.org/10.1007/978-3-319-09315-4_6
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Fig. 5.5 The integrand of the stress (6.2.7), σ ′, (normalised in the same units as Fig. 5.4) is plotted
for κ = 1 at the centre of the system, with k‖ varying from k‖ = 1 to k‖ = 6, 000 (horizontal axis),
and N ranging from t = 10 to t = 6, 000 (depth axis). As the number of slices N is increased, the
integrand falls off less rapidly with k‖, and thus the integral of the stress converges less rapidly

5.4.3 Speculations on Spatial Dispersion

We might wonder how finite results ought to be extracted from this formalism. The
advantage of the usual regularisation procedure is that it removes an infinite quantity
that does not depend on the inhomogeneity of the medium, which cannot be relevant
to the force. Conversely, here we have a divergent contribution that is due to the
inhomogeneity of the medium. The divergence originates within the fact that the
reflection coefficients (5.3.57), (5.3.58) do not go to zero fast enough as k‖ → ∞ in
the limit where a → 0.

One approach to this problem might be to terminate the integral over k‖ at some
finite cut–off. However, the value of this cut–off would seem to be arbitrary. Alterna-
tively, before the continuum limit is taken, we might just remove some small region
of the sum around the point where k − j = 1, although the size of this region would
also be arbitrary. This problem is reminiscent of that found in the case of spontaneous
emission within an absorbing dielectric, where an additional physical parameter—
equivalent to removing a portion of the dielectric in the immediate vicinity of the
atom—must be introduced in order to obtain a finite emission rate [17, 18].

However, it might be urged that the solution to this problem involves the recog-
nition that, as with other problems in physics, the specific dependence of the dielec-
tric media on both the frequency and the wave vector ought to be included within
the macroscopic description of matter, at the level of the electric permittivity and
magnetic permeability functions. It is a familiar thought that realistic models of

http://dx.doi.org/10.1007/978-3-319-09315-4_6
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macroscopic media must include the phenomenon of temporal dispersion: in linear
and causal time-independent systems, this amounts to the acknowledgement that the
general relation between the electric displacement D and the electric field E, given
by the dielectric response tensor of the medium, ε(r, r′, t − t ′), involves the response
of the system not only at time t but also the delayed response to the field at previous
times t ′ < t ,

D(r, t) =
∫

dr′
t∫

−∞
dt ′ε(r, r′, t − t ′) · E(r′, t ′). (5.4.22)

The time integration can be rewritten as a temporal Fourier transform, and the re-
sponse function replaced by the more familiar frequency-dependent electric permit-
tivity, so that

D(r, t) =
∫

dr′ε(r, r′, ω) · E(r′, ω). (5.4.23)

However, (5.4.22) also acknowledges that the response at a position r depends on
positions within the locality of r, as well as the point of measurement itself. Strictly
speaking, this non-locality holds for all materials at the microscopic level, as they are
made of atoms, and the phenomenological approximation of a continuous medium
is no longer applicable on this length scale. As the wavelength of light is typically
much larger than the interatomic distance, it is generally reasonable to assume that
E(r′) ≈ E(r), yielding a local response

D(r, ω) = ε(r, ω) · E(r, ω). (5.4.24)

Nevertheless, it has been shown that non-local effects must be considered in order
to model the behaviour of the Casimir force at finite temperature [19], and it has
also been noted that this approximation may fail close to the surface of a material
[20, 21]. For a system that is translationally invariant, with a response depending on
the separation r − r′, we may write a new permittivity function by taking a spatial
Fourier transform with the wave vector k, as well as a temporal Fourier transform
with respect to time:

ε(k, ω) =
∫

dr′
t∫

−∞
dt ′ε(r − r′, t − t ′) · E(r′, t ′). (5.4.25)

This non-local dependence is known as spatial dispersion, being formally similar to
temporal dispersion. Properly, a complete model of dispersion requires the dielectric
response of the medium to fall off to its free space (bare vacuum) magnitudes, for
high values of frequency and wave number:

lim
k→∞ ε(k, ω) = 1 and lim

ω→∞ ε(k, ω) = 1. (5.4.26)



114 5 The Divergence of the Casimir Stress

Importantly, if the response of the material falls off fast enough with high wave
numbers, the stress tensor (5.2.1) may turn out to be finite after all. To examine
this question, however, requires detailed empirical information about the material
sample, or a sufficiently well-motivated theoretical model of dielectric, from which
its high-wavenumber response can be modelled. Such probing questions into the
detailed structure of macroscopic media are beyond the scope of this present study
and seem unlikely to yield a fundamental solution: the Casimir energy of a system
without spatial or temporal dispersion can be stated exactly, as we witnessed in the
previous chapter, and the divergence of the stress does not arise from its temporally
dispersive properties.

5.5 Summary Remarks

In this chapter we have examined the local behaviour of the regularised stress tensor
commonly used in calculations of the Casimir force for a dielectric medium inhomo-
geneous in one direction. We have seen that the usual expression for the stress tensor
is not finite anywhere within the medium, whatever the temporal dispersion or index
profile, and that this divergence is unlikely to be removed by simply modifying the
regularisation procedure. These findings hold for all magnetodielectric media.

From our investigation, it is clear that a calculation of (5.2.1) for a piecewise
definition of an inhomogeneous medium does not represent an approximation to
the continuous case. Our result is consistent with earlier findings,16 and illustrates
the generality of the problem of specifying the local value of the electromagnetic
stress tensor at T = 0K when the material parameters vary continuously over space.
Moreover,we identify a divergenceof the local value of the stress tensor that cannot be
removed by the procedure of regularisation usually advocated; it arises specifically
due to the unphysical contribution of high wave numbers in the continuum limit.
This problem does not seem to be widely appreciated in the literature. In [13] and in
[22] reflection coefficients were similarly employed to determine the Casimir force
in systems with increasingly refined inhomogeneous features, but the limits of the
applicability of this technique were not commented on.

A continuously varyingmedium introduces arbitrarily small inhomogeneities into
a system. A possible explanation for the divergence we have identified is that the
Casmir force does not depend on such small-scale inhomogeneities, and a generally
finite and physically meaningful result must be obtained by finding some simple
modification to the existing regularisation procedure.

16 In [9] the stress inside an inhomogeneousmediumwith a similar profile to (5.4.20)was determined
using the exact Green function. However, it was infinite everywhere. An alternative regularisation
was proposed, but this proved unsuccessful [4].
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Part III
Conundrums in Casimir Theory



Chapter 6
The Casimir Force in a ‘Compressive’ Medium

The Tardis, when working properly, is capable of many amazing
things, not unlike myself.

The 6th Doctor

6.1 The Paradox of Transformation Media

As we have observed in the previous two chapters, it remains beyond the scope of
present theory to predict both the nature and size of Casimir forces in many simple
systems. For example, consider the case of a cavity with perfect mirrors—Casimir’s
original model. We know that it is possible to calculate a Casimir force using Lifshitz
theory for an empty cavity [1], or a cavity filled with perfectly homogeneous fluid,
such as purified water [2, 3]. A spoonful of sugar dissolved in the water, however,
is enough to frustrate the calculation; the stress tensor yields an infinite force on the
mirrors with even the gentlest perturbation in the optical properties of the medium,
when the perturbation is described as a continuous function of position. It seems that
Casimir forces are, in general, impossible to predict in inhomogeneous media using
Lifshitz theory [4–6].

However, as an idealised thought-experiment, we can imagine introducing an
inhomogeneous metamaterial into a cavity whose effect on light could be interpreted
as a simple distortion of the laboratory coordinate system.1 Such media are common
to the field of transformation optics, and have been put to use in various applications
(such as simple cloaking devices, for example) [8, 9]. It is inconceivable that such a
modification to the cavity could alter the fundamental nature of the Casimir force.2

1 The main results in this chapter were published in [7].
2 Maxwell’s equations in a transformed coordinate system (transformed from a Cartesian grid)
in empty space take the same form as Maxwell’s equations in a Cartesian system with a medium
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There may appear to be a contradiction, then, with our earlier conclusions: we have
found that the stress tensor suffers a divergencewhenwe attempt to calculate it within
an inhomogeneous medium [4, 5]; however, as we will see, it is possible to imagine
introducing an idealised inhomogeneous medium in the chamber that effectively
modifies the size of an empty cavity—in which case, we can predict that the Casimir
force should be finite.

In this chapter, we resolve this apparent contradiction. In so doing, we are able to
determine an exact expression for the Casimir force when a certain inhomogeneous
medium, which we will call the C-slice, is introduced between the walls of a reflec-
tive cavity. Analytic solutions for Casimir forces are extremely rare—the attraction
between two plates with infinite electric permittivity [1], the repulsion between plates
with infinite electric permittivity and magnetic permeability [10], and the attractive
force on a homogeneous spherical ball with infinite permittivity have been solved
[11]. There are perhaps only two exact solutions for the Casmir force in a gradually
varyingmedium: the first is the subject of the next chapter; wewill discuss the second
one here.

6.2 The Casimir Force in a ‘Compressed’ Cavity

6.2.1 Properties of the C-Slice

Once again, we consider a simple modification of Casimir’s cavity, in which a wafer
characterised by anisotropic, inhomogeneous electric permittivity and magnetic per-
meability tensors

ε = diag(εxx , εyy, εzz), μ = diag(μxx ,μyy,μzz),

given by

ε(z,ω) = μ(z,ω) =
⎛

⎝
m(z,ω)−1 0 0

0 m(z,ω)−1 0
0 0 m(z,ω)

⎞

⎠ (6.2.1)

is inserted between the perfect mirrors of the cavity (see Fig. 6.1). The cavity mirrors
are positioned at z = 0, d, and the wafer occupies an interval z ∈ [a, b] ⊂ [0, d].
This interposingmedium, whichwewill refer to as aC-slice,3 is impedance-matched

(Footnote 2 continued)
present. These different pictures are referred to as the ‘virtual’ and the ‘physical’ space respectively
[8]. In swapping between them, the physics should remain the same. Considered in the ‘virtual
space’ of the effective geometry the device implements, the coordinate transformed values of the
permittivity and permeability tensors remain homogeneous. In the coordinate system of physical
space, however, the optical properties of the device vary continuously.
3 The C here denotes a compression of the vacuum. The compressive properties of a homogeneous,
non-dispersive form of this metamaterial have been discussed pedagogically in [12].
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Fig. 6.1 The C-slice (green)
effectively compresses or
expands the coordinate
system of the cavity in one
dimension along the direction
in which its permittivity and
permeability are varying
inhomogeneously (the z-axis)

x y

z

and intended to implement a coordinate transformation in which an interval of space
is compressed along the z–axis by a factor

CS = 1

�

b∫

a

m(z,ω) dx, � = b − a. (6.2.2)

It is not difficult to see why the C-slice should have these properties [12]. Begin-
ning first with a homogeneous, non-dispersive C-slice, where the compression can
be characterised by a simple factor m(z,ω) = const = m, we consider an elec-
tromagnetic wave with wave number k travelling parallel to the intended axis of
compression. The wave must pick up the same phase, as it passes through the length
of the device, as it would have acquired had it passed through an uncompressed
region. Hence

k� = km�
√

ε⊥μ⊥. (6.2.3)

Here, ε⊥ and μ⊥ are the permittivity and permeability components normal to the axis
of compression; ε‖ and μ‖ are the components that are parallel to it. From (6.2.3) we
deduce that

ε⊥μ⊥ = m−2. (6.2.4)

In order to be equivalent to a distortion of the coordinate system, we require
impedance-matched media, ε = μ, hence

ε⊥ = μ⊥ = m−1. (6.2.5)
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Consider now a wave travelling along the x–axis, perpendicular to the axis of com-
pression, and therefore free of any compression, polarised so that the magnetic field
lies along the z–axis, and the electric field along the y–axis. In this case

k = k
√

ε⊥μ‖, (6.2.6)

from which we deduce that μ‖ = m, and hence ε‖ = m. The generalisation to the
inhomogeneous case is trivial: for each infinitesimal region δz, the space is now
compressed to m(z)−1δz, and the overall compression factor is given by (6.2.2).
Finally, by incorporating a frequency dependence, we allow different frequencies to
experience different levels of compression, and therefore allow for some degree of
dispersion.

However, this remains an idealised model: the Casimir Effect is a broadband
phenomenon, and it is difficult to see how the necessary condition of impedance-
matching could in practice be secured for a sufficiently large portion of the elec-
tromagnetic spectrum.4 Nevertheless, the practical difficulties of implementing this
device should not disqualify its use in a Gedankenexperiment, and we will briefly
discuss some possible applications for the C-slice later in this chapter.

6.2.2 Modifying the Casimir Force

6.2.2.1 Lifshitz Theory in Anisotropic Media

The vacuum stress of the cavity, according to Lifshitz theory, is determined by the
scattering properties of its constituents, and can be codified in the form of reflection
coefficients. In the case of anisotropic media, the form of the stress must be modified
[14], replacing (5.2.1) with

σxx (x) = 2�c

∞∫

0

dκ

2π

∫

R2

d2k‖
(2π)2

w Tr

[
RLRRe−2dw

1 − RLRRe−2dw

]
, (6.2.7)

where the scalar reflection coefficients have been supplanted by matrices

RL =
(

rss
L r sp

L

r ps
L r pp

L

)
, RR =

(
rss

R rsp
R

r ps
R r pp

R

)
. (6.2.8)

Physically, this reformulation of the stress anticipates the phenomenon of conversion
between polarisations that can take place in anisotropic media. r pq

L ,R is the ratio of
a field with p–polarization divided by an incoming field with q–polarization, for

4 For a more positive appraisal of the utility of metamaterials for modifying the Casimir force,
see [13].

http://dx.doi.org/10.1007/978-3-319-09315-4_5
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reflection from the left (L) or right (R). The indices s and p correspond respectively
to the customary perpendicular and parallel polarizations with respect to the plane of
incidence. In the case of isotropic media, the off-diagonal elements of both matrices
vanish, the diagonal elements are given by the familiar Fresnel expressions, and
(6.2.7) reduces to the usual Lifshitz formula (5.2.1).

6.2.2.2 4d Transfer Matrices

To determine how a C-slice modifies the Casimir force, we must compute the
reflection coefficients of the device for all angles of incidence. The C-slice we are
considering, in this case, is an inhomogeneous material; its optical properties vary
continuously along the z−axis. A set of reflection coefficients may be obtained, how-
ever, by approximating the cavity as a series of N + 1 homogeneous slices of width
δz, where each slice has electric permittivity εn and magnetic permeability μn , and
n ∈ [0, N +1] indexes the slicing. It is possible to compute such a set of coefficients
for finite N , whether or not the stress tensor is divergent in the continuum limit (see
Chap.5). Between the plates, the electric and magnetic response is characterised by

εn = μn =
⎛

⎝
m−1

n 0 0
0 m−1

n 0
0 0 mn

⎞

⎠ for n ∈ [2, N ]. (6.2.9)

For an empty slice,mn = 1.Once the reflection coefficients have been determined,
the stress may be calculated. Adopting a slightly different notation from before, for
convenience, we can write an expression for the field in a homogeneous slice in terms
of two orthogonal polarisations, forwaves propagating both forwards and backwards,
λ ∈ {1, 2} and λ ∈ {3, 4}:

(
En

Hn

)
=

4∑

λ=1

E (λ)
n

(
e(λ)

n

h(λ)
n

)
, (6.2.10)

where e(λ)
n andh(λ)

n are the eigenmodes of the electric andmagnetic fields respectively
in a medium with the optical properties of slice n. There are four eigenmodes of the
field to a slice, corresponding to two independent modes propagating forwards and
backwards; the general solution for the field is a linear combination of all four of
them. The transfer matrix technique [15–19] can again be used for such an analysis
of the field, the field in strip n + 1 being related to the field in n by

E(n + 1) = t(n + 1) · E(n), (6.2.11)

where t(n + 1) is the 4 × 4 transfer matrix relating the field on the right side of a
boundary between two media to the field on its left. As before, we obtain the transfer
matrix by imposing the boundary conditions at the interface (see Sect. 5.3.1). We

http://dx.doi.org/10.1007/978-3-319-09315-4_5
http://dx.doi.org/10.1007/978-3-319-09315-4_5
http://dx.doi.org/10.1007/978-3-319-09315-4_5


124 6 The Casimir Force in a ‘Compressive’ Medium

need only impose four of them to determine the field, as the electric and magnetic
components are not independent of each other. For the convenience of this repre-
sentation we will require that the tangential components of both fields should be
continuous at the boundary:

∑

λ

E (λ)
n e(λ)

n · ŷ =
∑

λ

E (λ)
n+1 e(λ)

n+1 · ŷ, (6.2.12a)

∑

λ

E (λ)
n h(λ)

n · x̂ =
∑

λ

E (λ)
n+1 h(λ)

n+1 · x̂, (6.2.12b)

∑

λ

E (λ)
n h(λ)

n · ŷ =
∑

λ

E (λ)
n+1 h(λ)

n+1 · ŷ, (6.2.12c)

∑

λ

E (λ)
n e(λ)

n · x̂ =
∑

λ

E (λ)
n+1 e(λ)

n+1 · x̂. (6.2.12d)

Equation (6.2.12a–6.2.12d) can be written in the form of a 4d matrix equation:

⎛

⎜⎜⎜⎜⎜⎜⎝

E (1)
n+1

E (2)
n+1

E (3)
n+1

E (4)
n+1

⎞

⎟⎟⎟⎟⎟⎟⎠
= M(n + 1)

⎛

⎜⎜⎜⎜⎜⎜⎝

E (1)
n

E (2)
n

E (3)
n

E (4)
n

⎞

⎟⎟⎟⎟⎟⎟⎠
. (6.2.13)

The matrix M(n + 1) implements the boundary conditions at the interface between
slices n and n + 1,

M(n + 1) = D(n + 1)−1D(n), (6.2.14)

and is computed for a system of two half-spaces. The matrix D(n) characterises the
state of the electromagnetic field in a medium with the dielectric properties of slice
n, and is defined

D(n) =

⎛

⎜⎜⎜⎜⎜⎜⎝

e(1)
n · ŷ e(2)

n · ŷ e(3)
n · ŷ e(4)

n · ŷ

h(1)
n · x̂ h(2)

n · x̂ h(3)
n · x̂ h(4)

n · x̂

h(1)
n · ŷ h(2)

n · ŷ h(3)
n · ŷ h(4)

n · ŷ

e(1)
n · x̂ e(2)

n · x̂ e(3)
n · x̂ e(4)

n · x̂

⎞

⎟⎟⎟⎟⎟⎟⎠
, (6.2.15)

where ei (n) and hi (n) are the i th eigenmodes of the electric and magnetic fields
respectively. The transfer matrix can be decomposed into two components,

t(n + 1) = M(n + 1)�(n + 1), (6.2.16)
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where �(n + 1) is a diagonal matrix consisting of phase propagation terms that
evolves the field between the two boundaries.

Here we have adopted 4 × 4 transfer matrices rather than the standard 2 × 2
transfer matrices. For electromagnetic waves travelling inside isotropic media, it is
always possible to express the field as a combination of two independent modes, e.g.
the s and p modes, and analyse the propagations of the two modes separately; the
polarizations are conserved as the field passes across the interface. However, this
does not hold in general for anisotropic media, where the polarisations can mix. We
have begun by adopting amore general formulation, appropriate to considering wave
transmission and reflection in this context.

To calculate the value of (6.2.7) at a fixed point in the medium, zl (that is, within
the lth slice) we require expressions for both RR , and RL . These can be calculated as
before in terms of the total transfer matrices associated respectively with propagation
through the medium to the light and to the left of zl :

T L =
l∏

n=1

t(n), T R =
N+1∏

n=l+1

t(n). (6.2.17)

These transfer matrices determine the relative magnitudes of the field components
in each slice, and therefore fix the values of the reflection coefficients. Prima facie,
the continuum case is recovered in the limit as δz → 0 and N → ∞. But here’s the
rub: it is precisely in this limit that the stress has been found to diverge [4, 5], and
this is the crux of the conundrum we need to address. For the moment, let us proceed
nonetheless by determining the relevant transfer matrices.

6.2.2.3 The Boundary Conditions

The system we are considering consists of a series of homogeneous slices. The
interface between two slices occurs in the xy–plane. Without loss of generality, we
can rotate the x and y axes of our coordinate system so that the plane of incidence is
the xz plane. Consequently the wave vectors have zero y components:

k1 = (k1x , 0, k1z), k2 = (k2x , 0, k2z), (6.2.18)

where k1 is the wave vector of the incident light, and k2 is the wave vector of the
transmitted light. The frequencies of the reflected and transmitted waves must be the
same as that of the incident wave, because the above conditions hold at the boundary
at all times—this is only possible if the waves on either side are oscillating at the
same frequency. Additionally, the conditions hold at all points on the boundary plane
z = 0, so the changing phases of the waves on either side must agree as one moves
along the boundary, i.e.

k1 · r|z=0 = k2 · r|z=0 . (6.2.19)
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As r = (x, y, z), and the above equations hold for all values of x and y.

k1x = k2x . (6.2.20)

The first component of the transmitted wave vector is therefore determined by the
first component of the incident wave vector:

k2 = (k1x , 0, k2z). (6.2.21)

The kz component of the wave vector, in subsequent slices, is determined by the
wave equation.

6.2.2.4 The Wave Equation

The electric field in a homogeneous slice of the system is of the form

E = (Ex x̂ + Ey ŷ + Ez ẑ)ei(ωt−k·r). (6.2.22)

First, we derive a wave equation of general applicability. Applying Maxwell’s equa-
tions

∇ × E = −∂B
∂t

, ∇ × H = ∂D
∂t

, (6.2.23)

to Eq. (6.2.22), we arrive at the following form of the wave equation:

(ε)−1
{

k ×
[
(μ)−1 · (k × E)

]}
+ ω2E = 0. (6.2.24)

This can be rewritten in matrix form. For a portion of a C-slice, which has optical
properties characterised by (6.2.9), we obtain

⎛

⎜⎜⎜⎝

− k2y
m − k2z m + ω2

m
kx ky

m kx kzm

kx ky
m − k2x

m − k2z m + ω2

m kykzm

kx kzm kykzm −k2x m − k2ym + mω2

⎞

⎟⎟⎟⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ = 0.

(6.2.25)

6.2.2.5 Eigenmodes of the C-Slice

For non-trivial solutions of the wave equation, we require that the determinant of
(6.2.25) should be equal to zero. From the secular equation we obtain the dispersion
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relations of the eigenmodes. For a space with the properties of the C-slice, they are
simple and degenerate:

ω(i)
n = ±

√
k2nx + k2nzmn, (6.2.26)

for each polarisation i and each slice n. As in the previous calculation, wemay ignore
dispersion by setting m(z,ω) = m(z). The eigenmodes of the electric field (prior to
normalisation) are determined to be s

e(1)
n = e(2)

n =
(

−knzm2
n

knx
, 0, 1

)
, (6.2.27a)

e(3)
n = e(4)

n = (0, 1, 0) . (6.2.27b)

The correspondingmagnetic fieldmodes can be derived directly from the eigenmodes
of the electric field via

h(i)
n = 1

ωn
(μn)−1

(
kn × e(i)

n

)
, (6.2.28)

from which we obtain

h(1)
n = −h(2)

n =
(
0,−mn

ωn

{
knx + k2nzm2

n

knx

}
, 0

)
, (6.2.29a)

h(3)
n = −h(4)

n =
(

−knzmn

ωn
, 0,

knx

ωnmn

)
. (6.2.29b)

6.2.2.6 Reflection Coefficients in a C-Slice

For an interface consisting of two C-slice half-spaces, α and β, we can relate the
field inside the first layer, and to the immediate left of the interface, with the field
inside the second layer, and immediately right of the interface, by the zero-phase
transfer matrix (6.2.14). For ease of interpretation, let us write the relationship as

⎛

⎜⎜⎝

Et
I
0

Et
I I
0

⎞

⎟⎟⎠ = M

⎛

⎜⎜⎝

Ei
I

Er
I

Ei
I I

Er
I I

⎞

⎟⎟⎠ . (6.2.30)

Ei
I , Er

I I , in this case, represent thewaves of an arbitrarily chosen polarisation incident
upon and reflected by the boundary, and Et

I the transmitted mode. For the second
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orthogonal polarisation, we substitute I I for I . The reflection coefficients are then:

rI→I = Er
I

Ei
I

∣∣∣∣∣
Ei

I I =0

= M24M41 − M21M44

M22M44 − M24M42
, (6.2.31a)

rI→I I = Er
I I

Ei
I

∣∣∣∣∣
Ei

I I =0

= M21M42 − M22M41

M22M44 − M24M42
, (6.2.31b)

rI I→I = Er
I

Ei
I I

∣∣∣∣∣
Ei

I =0

= M24M43 − M23M44

M24M42 − M22M44
, (6.2.31c)

rI I→I I = Er
I I

Ei
I I

∣∣∣∣∣
Ei

I =0

= M22M43 − M23M42

M24M42 − M22M44
. (6.2.31d)

The double-indexing acknowledges the possibility of conversion between the polar-
isations: for example, a wave of type I may be reflected in its orthogonal form II.
For the C-slice, inserting expressions (6.2.27a, 6.2.27b), and (6.2.28) into matrix
(6.2.15), and determining the inverse, we find the transfer matrix M = D(β)−1D(α)
takes the form:

M = 1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

mα

m2
β

(
kαz
kβz

mα + ωα
ωβ

mβ

)
mα

m2
β

(
kαz
kβz

mα − ωα
ωβ

mβ

)
0 0

mα

m2
β

(
kαz
kβz

mα − ωα
ωβ

mβ

)
mα

m2
β

(
kαz
kβz

mα + ωα
ωβ

mβ

)
0 0

0 0 1 + kαzωβ
kβzωα

mα
mβ

1 − kαzωβ
k2zωα

mα
mβ

0 0 1 − kαzωβ
kβzωα

mα
mβ

1 + kαzωβ
k2zωα

mα
mβ

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(6.2.32)

Evidently there is no mixing of the two polarisations in the C-slice. Further simpli-
fication of this matrix is possible, since ωα = ωβ and

√
k2αx + k2αzm2

α =
√

k2αx + k2βzm2
β

=⇒ k2αzm2
1 = k2βzm2

β .

We know that these factors share the same signs. Therefore we infer that

kαzmα = kβzmβ . (6.2.33)

This, of course, is to be expected: the knz wave numbers in a homogeneous slice n
are equal to the vacuum wave number k0z compressed by a factor of mn .

knz = k0z

mn
. (6.2.34)
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With these simplications, it is clear that the matrix is diagonal, and reduces to the
form

M =

⎛

⎜⎜⎝

mα
mβ

0 0 0

0 mα
mβ

0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ . (6.2.35)

Thus we find that, for all angles of incidence, the reflection coefficients (6.2.31a–
6.2.31d) are identically zero; there is no internal scattering within a C-slice.

6.2.2.7 The Force on the Plate

If we consider now the whole system, consisting of a series of N + 1 homogeneous
slices between and contiguous with the two mirrors, and the reflection coefficients
associated with sending planewaves to the right and to the left of any given point zl in
the cavity, it is clear that they are of the same form, but with the matrix M substituted
by the transfer matrix TL or TR, when calculating the left or right reflection coeffi-
cients respectively. Between the plates, these transfer matrices are diagonal matrices
consisting of phase terms, being made up of products of diagonal M and�matrices.
For n ∈ [2, N ], the M matrices do not modify the reflection coefficients, and can be
replaced with identity matrices, hence the contribution to the transfer matrices for
n ∈ (2, N ) consists entirely of phase terms that divide into two sets: the phase terms
for which mn = 1 (i.e. slices of vacuum), and the phase terms for which mn �= 1
(i.e. C-slice material). The reflection matrices (6.2.8) are diagonalised.

We recover Casimir’s original result by setting mn = 1∀n. This problem has
already been solved, and we will not repeat the details of that calculation again.
To determine the force on the left or right plate in our example, where a C-slice
has been introduced into the cavity, we need only consider the way in which the
C-slice modifies the relevant transfer matrices that determine the reflection coef-
ficients. From the discussion above, it is evident without further calculation that
this difference amounts to nothing more than a modification of the accumulated
(imaginary) phase: slices containing C-slice material produce an amount of phase
in their corresponding transfer matrices that differs by a factor of mn from slices of
vacuum,5 modifying the e2dw term in the stress to e2d ′w. The reflection coefficients
at the mirrors remain unmodified during the motion. The addition of the wafer, then,
simply modifies the effective length of the cavity, seen by a given frequency ω, from
a distance d to

d ′ = d + �(C−1
S − 1), (6.2.36)

5 The m factors that appear in the M matrix disappear in any product of the transfer matrices
spanning two sides of the device, which is situated in vacuum, where m = 1.
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and the modified Casimir pressure can be stated exactly by simply substituting the
distance paramater d, in the original expression for the Casimir force (1.1.23), with
the effective length of the cavity d ′. For a non-dispersive C-slice, the Casimir force
is easily restated:

P = − �cπ2

240d ′4 = − �cπ2

240
(

d + �(C−1
S − 1)

)4 . (6.2.37)

6.3 Applications of the C-slice

Quantum stiction, due to the ‘stickiness’ of the Casimir effect, has been acknowl-
edged as a serious engineering problem for micro and nano–machinery [3]. At
such length scales, Casimir-Lifshitz forces are no longer negligible and can lead to
unwanted attraction between, and adhesion of, material parts in the device. Although
immersion in a suitably dense liquidmay reduce the phenomenon of quantum stiction
(by effectively increasing the optical distance between the parts) this would introduce
viscous forces into the system, among other complications. For micromachines that
cannot be thus immersed (for example, where the parts need to move in relation to
each other) the freedom of a surrounding vacuum remains necessary. An idealised
C-slice seems to suggest itself as one possible solution to this problem. Without
modifying the physical dimensions of the cavity, or introducing new surfaces for
interaction, the effective size of the cavity can be made arbitrarily large, and the
Casimir force made arbitrarily small, by interposing a thin layer or wafer made to
the appropriate specifications (6.2.1).6 A similar proposal for tackling stiction was
made in [13], using a negatively refracting medium to produce a repulsive Casimir
force, with the disadvantage that optical pumping would be required. The C-slice
does not require optical pumping. However, as we observed earlier, the quantum
Casimir effect is a broadband phenomenon, and it seems unlikely that the necessary
condition of impedance-matching could be secured for a sufficiently large portion
of the electromagnetic spectrum, though an argument to the contrary can be found
in [13]. Whether or not a material could be made that approximated the effects of
the C-slice is a problem we will not examine here. For the thermal Casimir effect,
however, it has been observed that, as the temperature increases, contributions to the
force are increasingly distributed around a characteristic frequency [20]; it is per-
haps more conceivable that an impedance-matched metamaterial implementing the
C-slice could be designed for tuning the thermal Casimir effect. However, there are
applications outside of the domain of Casimir Physics. By virtue of its non-reflective
properties and its capacity to change the measure of optical distance, the compres-
sive transformation implemented by a C-slice can be used to reduce the profile of
a lens [21], for example. Perhaps there may also be some use for the C-slice in a

6 In this case, a homogeneous C-slice would be sufficient to achieve the desired effect, and should
be engineered so that m < 1.

http://dx.doi.org/10.1007/978-3-319-09315-4_1
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Fig. 6.2 The Casimir force
produces ‘quantum stiction’
in micro and nanomachinery,
causing tiny machine parts to
stick together. Image credit
http://mems.sandia.gov

laser system, should there be occasion to modify the resonant frequency of a cavity
without disturbing the cavity walls. We must leave the development of such ideas
for discussion elsewhere, however.

6.4 Summary Remarks

In this chapter, we have imagined introducing an inhomogeneous, anisotropic trans-
formation medium into a cavity that implements a simple distortion of the laboratory
coordinate system, effectively compressing or expanding space along one axis. For
an idealisedC-slice, configured to expand the space between themirrors, the Casimir
force can in theory be reduced arbitrarily (Fig. 6.2).

Initially, it seemed this Gedankenexperiment could contradict our earlier con-
clusions, in Chap. 5: it appears the Casimir stress in an inhomogeneous medium is
cutoff-dependent. However, the inhomogeneous C-slice merely modifies the optical
distance between the walls of an empty cavity. In an empty cavity, the Casimir stress
is independent of the cut-off.

We have established fairly straightforwardly that there is no contradiction here.
The Casimir stress in an inhomogeneous medium may depend on details which,
as yet, remain unincorporated within Casimir theory. However, in such cases there
is scattering within the medium; the stress diverges [4], and the force is cutoff-
dependent [5], because the reflection coefficients fail to fall off fast enough in the
limit of high wave numbers, as discussed in Sect. 5.4.1. However, in the case of the
C–slice, the reflection coefficients are precisely zero for all angles of incidence, and
the stress does not diverge. Such ‘transformation media’ merely change the measure
of optical distance without introducing additional scattering events. Therefore, it is
possible to determine the Casimir forces for systems incorporating transformation
media, even when they involve continuously changing dielectric properties. In this

http://mems.sandia.gov
http://dx.doi.org/10.1007/978-3-319-09315-4_5
http://dx.doi.org/10.1007/978-3-319-09315-4_5
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chapter, we have essentially identified a subset of idealised inhomogeneous systems
for which Lifshitz theory may still make meaningful predictions.7 In the example
we have considered, where we interpose a C-slice between two parallel plates, or
expand it to fill the entire volume of the cavity, the medium changes the Casimir
force by modifying the effective size of the cavity. However, the force on the cavity’s
walls remains attractive and finite.
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Chapter 7
The Casimir Force in Maxwell’s Fish-Eye

Let no one enter who does not know geometry.
Inscription over the door of Plato’s Academy

7.1 The Paradox of Maxwell’s Fish-Eye

In this chapter we will consider a conundrum created by the case of the Casimir force
inMaxwell’s fish-eye.1 And this time we cannot offer a complete resolution. Our last
problem is a perplexing one. Maxwell’s fish-eye is an inhomogeneous metamaterial
with some remarkable properties. The notion of materials distorting the geometry
of space for light is one we have touched on already. In the case of Maxwell’s fish-
eye, this metamaterial induces a stereographic projection of the hypersphere onto 3d
flatspace, and in so doing threatens to warp the classic procedure of regularisation in
Casimir Physics. Once again, as we will see, adopting a geometric viewpoint leads
to a paradox: the symmetry properties of the fish-eye (without a mirror) exclude the
possibility of a Casimir force; however, the stress tensor is infinite throughout the
medium, and likewise the predicted self-force. ‘These things ought not so to be’. In
grappling with this problem, we find that we can in fact uncover a solution for the
Casimir stress in an inhomogeneous system containing the medium of a fish-eye, by
exploiting its geometric properties, but it is an answer that leads to more questions.

1 The main results in this chapter were published in [1].
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7.2 The Geometry of the Fish-Eye

The fish-eye is an impedance matched2 inhomogeneous medium with an electric
permittivity and magnetic permeability equal to

ε = μ = n = 2n1

1 + (r/a)2
. (7.2.1)

For simplicity, we will set n1 = 1, a = 1, throughout this chapter, corresponding to
the case of a fish-eye of unit radius with a background refractive index of unity:

n = 2

1 + r2
. (7.2.2)

7.2.1 The Stereographic Projection

From Fermat’s principle, we know that light rays travel extremal optical paths with
path lengths s measured by the refractive index n,

s = nl. (7.2.3)

In other words, light travels along geodesics. We can think of optical materials as
modifying the geometry of space for light. Significantly, the transformation induced
by the fish-eye does not constitute merely a reconfiguration of flat coordinate space,
unlike the C−slice. The geometry of the fish-eye has an intrinsic curvature, as can
be verified from the computation of the curvature scalar [2], which is given by

R = 8(∂zn)(∂z∗n)

n4 − 8∂z∂z∗n

n3 , n = 2

1 + |z|2 ⇒ R = 2 �= 0. (7.2.4)

But what are the geodesics of this geometry? To discover this, we must consider just
how the fish-eye modifies the measure of space, effectively absorbing the material of
the fish-eye within the geometric properties of an empty ‘virtual space’, described by
a primed coordinate system in which n′ = 1. For convenience, let us adopt a complex
number representation of the coordinate system of physical space, ζ = x + iy, and
restrict ourselves to considering the curved space induced by a 2d fish-eye, for which
we require 3 dimensions in Cartesian space (x ′, y′, z′). The line element is defined

ds′2 = dx ′2 + dy′2 + dz′2. (7.2.5)

2 Impedance matching is a condition imposed in [2] for securing a virtual geometry for electromag-
netic fields.
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We have already hinted that the relationship between the two coordinate systems is
given by a stereographic projection. Adopting the ansatz

ζ = x ′ + iy′

1 − z′ , (7.2.6)

which is more conveniently expressed in its inverse form,

x ′ + iy′ = 2ζ

1 + |ζ |2 , z′ = |ζ |2 − 1

|ζ |2 + 1
, (7.2.7)

we determine that

d
(
x ′ + iy′) = d

(
2ζ

1 + |ζ |2
)

= 2(dζ − ζ 2dζ ∗)
(1 + |ζ |2)2 , (7.2.8a)

dz′ = d

( |ζ |2 − 1

|ζ |2 + 1

)
= 2(ζ ∗dζ + ζdζ ∗)

(1 + |ζ |2)2 , (7.2.8b)

where the differential operator has been computed using the substitution

d → dζ ∂ζ + dζ ∗ ∂ζ ∗ . (7.2.9)

The line element (7.2.5) can be conveniently rewritten in the form

ds′2 = d
(
x ′ + iy′) d

(
x ′ − iy′) + dz′2. (7.2.10)

Inserting (7.2.8a, 7.2.8b) into (7.2.10) produces

ds′2 = 4

(1 + |ζ |2)4
{
(dζ − ζ 2dζ ∗)(dζ ∗ − ζ ∗2dζ ) + (ζ ∗dζ + ζdζ ∗)2

}
. (7.2.11)

Simplifying, we obtain

ds′2 =
(

2

1 + |ζ |2
)2

dζdζ ∗. (7.2.12)

Making the substitutions |ζ |2 → r2 and dζdζ ∗ → dl2 = dx2 + dy2, we find that

ds2 = ds′2 =
(

2

1 + r2

)2

dl2 = n2dl2. (7.2.13)

Thus a medium with the properties of Maxwell’s fish-eye in 2d performs the stereo-
graphic projection of the surface of a sphere to the 2d plane (Fig. 7.1). Generalising
to 3d, the fish-eye induces the geometry of the surface of the hyper-sphere. In the
curved space of the fish-eye, the ‘shortest paths’ are the great circles (see Fig. 7.2),
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Fig. 7.1 In 2d, the fish-eye induces the stereographic projection of the surface of a sphere onto a
plane. Image credit Geometry and Light [2]

Fig. 7.2 In 2d, light travels in
the virtual space of the
fish-eye along the great circles
of the surface of the sphere

and light rays emitted from an arbitrary point r0 will travel along one of the great
circles before passing through the antipodal point r ′

0 = −r0/r20 . In fact, circles on the
sphere (or hypersphere) map to circles on the plane (or block) in the stereographic
projection.3 It follows that light goes around in circles in Maxwell’s fish-eye.

7.2.2 The Force in the Fish-Eye

It is clear from the symmetries of the case that there is no net Casimir force in
Maxwell’s fish-eye; such a force could have no preferred direction.4 However,
the fish-eye constitutes an inhomogeneous medium, and we have amassed some

3 See Appendix and [2].
4 If it is suggested that a force might conceivably act radially outwards, in all directions, we simply
remind the reader that the force in physical space must be the same as the force in the virtual
free-space, and in virtual space we are dealing with a surface.
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evidence in Chaps. 4 and 5 suggesting that the theory of the Casimir effect suffers
from a systemic divergence problem in such cases. For the case of non-reflective
transformation media, discussed in Chap.6, the divergence does not bite. However,
Maxwell’s fish-eye implements a geometry with non-zero curvature, and a cavity
filled with fish-eye material will involve non-zero reflection coefficients, however it
is ‘sliced’.5

Calculations (which we will not repeat here) have confirmed that Lifshitz theory
predicts an infinite force for the fish-eye.6 Still, it may be possible to extract a
meaningful result from a Casimir problem involving the fish-eye by applying some
of our knowledge of the fish-eye’s geometric properties. The precise form that our
thought-experiment will take is partly motivated by a problem that Casimir posed
himself.

7.3 Maxwell’s Fish-Eye and the Finestructure Constant

7.3.1 Casimir’s Semi-classical Model of the Electron

In 1953 Casimir suggested an intriguing model that could explain the stability of
charged particles and the value of the finestructure constant [5]. The argument goes
as follows. Imagine a particle, like the electron, as an electrically charged hollow
sphere. Two forces are acting upon it: the Coulomb force (producing electrostatic
repulsion) and the force of the quantum vacuum (presumed to be attractive). The
stress σ of the quantum vacuum on a spherical shell of radius a must be given by a
dimensionless constant times �c/a4 on purely dimensional grounds—the quantum
stress is an energy density proportional to �, and �c/a4 has the units of an energy
density. Now, the electrostatic energy of the sphere is proportional to the square e2

of its charge and is also inversely proportional to a4 [6]. It follows that the Casimir
force should balance the electrostatic repulsion, regardless of how small the distance
parameter a may be, as long as e2/(�c) assumes a certain value given by the strength
of the Casimir force. This strength depends on the internal structure of the particle—
the fact that it is a spherical shell—but not on its size, which could be imperceptibly
small. Thus Casimir’s model, albeit crude, suggests a seductively simply explanation
for both the finestructure constant e2/(�c) and the stability of charged elementary
particles.

Unfortunately Casimir’s hopes for connecting the quantum vacuum to the stabil-
ising Poincare stresses required in the classical electron model proved to be short-
lived. In a seminal paper by Boyer in 1968 it was argued at length that the sign of the
zero-point energy is, in fact, the opposite to that proposed in Casimir’s model, and
consequently the Casimir force on a spherical shell is repulsive, not attractive; the

5 See the discussion in Sect. 6.4
6 The modified regulariser proposed in [3] has also been tested, with negative results [4].

http://dx.doi.org/10.1007/978-3-319-09315-4_4
http://dx.doi.org/10.1007/978-3-319-09315-4_5
http://dx.doi.org/10.1007/978-3-319-09315-4_6
http://dx.doi.org/10.1007/978-3-319-09315-4_6
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Fig. 7.3 The Casimir force
on a spherical shell is
repulsive—or is it? We
assumed the shell to be filled
with a medium (right) and
found an attractive Casimir
stress in the material. The
shades of grey indicate the
profile of the medium

force of the vacuum works with the Coulomb force to expand the sphere, rather than
stabilise it [7]. In Boyer’s own words, this seemed ‘a most melancholy’ conclusion,
subsequently corroborated by other attempts at the same calculation [8]. Indeed, the
spherical shell has become an archetype for a shape that causes Casimir repulsion
(Fig. 7.3).

However, doubts have been lingering over the question of whether the repulsive
force of the shellmay be an artifact of the simplemodel used, for the following reason:
the bare stress of the quantum vacuum is always infinite and this infinity is removed
by regularisation procedures. The most plausible procedure involves considering the
relative stress between (or inside) macroscopic bodies. Yet an infinitely thin sphere
does not represent an extended macroscopic body, nor multiple bodies. Suppose the
physically relevant vacuum stress of an extended spherical shell tends to infinity in
the limit when the shell becomes infinitely thin and infinitely conducting. In this case
the renormalization would remove this physically meaningful infinity, producing a
finite result that may very well have the wrong sign.7

7.3.2 The Fish-Eye with a Mirror

Suppose we consider a modification of Casimir’s model. Imagine the spherical
shell—still infinitely conducting and infinitely thin—is no longer hollow, but filled
with an impedance matched medium of gradually varying electric permittivity ε

and magnetic permeability μ, with the refractive index profile of Maxwell’s fish-eye
(7.2.1). For the boundary, we introduce a perfect mirror at r = 1. In 2d, this amounts
to placing a mirror on the equator of the sphere in virtual. In 3d, the mirror is a 2d
surface situated on the 4d hypersphere.

In this way we have extended the shell to a macroscopic body where the Casimir
stress (2.135) gradually builds up, whilst keeping the idealised boundary intact. As
before, this model possesses spherical symmetry, since we assume that ε and μ

7 The authors of [9], for example, claim ‘Lifshitz theory shows that the self-force is in fact inwardly
directed and infinite’.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
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depend only on the distance r from the center of the sphere. We continue to expect
no Casimir force in the center, therefore, because in a spherically symmetric medium
the center does not distinguish any direction for a force vector to point to. Our object
now is to calculate the Casimir stress tensor σ(r) which will be radially symmetric
and may change with increasing r . Lifshitz’ result (2.164), which is written in terms
of reflection coefficients and has served us well up till this moment, is no longer
applicable; we must turn instead to the more general formulation of the Casimir
stress, written in terms of the full electromagnetic Green function (2.135).

7.3.2.1 The Green Function of the Fish-Eye

The Green function of the bare fish-eye satisfying Maxwell’s equations and deter-
mining the behaviour of electromagnetic waves in the medium has been derived in
[10]. The derivation is rather lengthy and involved and we will not recite it here, but
it is documented fully and accessibly in [2]. The Green function may be succinctly
expressed in the form

G(r, r ′) = ∇ × n(rm)∇ ⊗ ∇′ D(rm)×
←−
∇′

n(r)n(r ′)k2
, (7.3.1)

where D describes a scalar wave on the hypersphere,

D(rm) = 1

8π

(
rm + 1

rm

)
sinh(2ik arccot [rm])

sinh(π ik)
, (7.3.2)

and is a function of the Möbius-transformed radius, defined by

rm = |r − r′|√
1 + 2r · r′ + r2r ′2 . (7.3.3)

Any rotation on the hypersphere can be described by a Möbius transformation in
physical space. It can be shown that this form of the tensor is Möbius invariant. It
follows that (7.3.1) holds for any point in space in which light can be found in the
fish-eye. If we imagine a succession of flashes from a source point in the fish-eye, the
combination of these two functions, G and D, dictates a reflection at the antipodal
point that will return each wave back to its source. The Green function of the fish-eye
is a bitensor that describes the electric field of a stationary wave with wave number
k, emitted by an elementary dipole placed at r ′ and measured at r ; r and r ′ are
distances in physical space from the centre of the fish-eye. For our purposes, we will
be considering waves with imaginary frequencies κ .

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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7.3.2.2 The Green Function of the Fish-Eye with a Mirror

We wish to calculate the Casimir force in the fish-eye with a mirror. In the geometri-
cal picture associated with Maxwell’s fish eye, the electromagnetic wave propagates
on the surface of the hypersphere from a source at r ′ to a spectator at r in stereo-
graphic coordinates with distance arctan rm , and D denotes the Green function of
a conformally coupled scalar field [2]. The effect of the mirror is described by an
adaptation of the method of images [6] on the hypersphere. There the mirror lies
on the equator (a 2-dimensional surface for the 4-dimensional hypersphere). Our
method is to subtract from the incident Green function Gi the electromagnetic wave
generated by the image source on the hypersphere Gr ,

G = Gi (r) − Gr (r). (7.3.4)

This reflected field is the mirror image of the original field. In stereographic projec-
tion, the reflection at the equator corresponds to the transformation8

r → 1

r2
r, (7.3.5)

or, in spherical coordinates, r → r−1. To obtain the reflected wave Gr , we thus
perform the coordinate transformation r = r(r ′) with r ′ = r−1, and then replace
r ′ by r in the incident wave Gi . As the Casimir stress in a spherically symmetric
medium must itself be spherically symmetric, we calculate Gi (r−1) only in the x
direction, i.e. we put y = z = 0, x ′ = 1/x , and y′ = z′ = 0. The Green function
(7.3.1) is rather complicated. With the aid of Mathematica, we obtain

Gi (r
−1) =

(
1 + x2

)2

16x2κ2ξ

⎛

⎝
2D′(ξ) 0 0

0 D′(ξ) + ξ D′′(ξ) 0
0 0 D′(ξ) + ξ D′′(ξ)

⎞

⎠ , (7.3.6)

where ξ = 1
2

(
−2 + 1

x2
+ x2

)1/2
. The inversion has preserved the line element

of Maxwell’s fish eye, and hence the transformed scalar Green function remains a
solution of the wave equation. Before arriving at the reflected wave, however, we
also need to transform the field components of the Green tensor Gi . This is effected
by applying the Jacobian

8 This is simply the inversion in the unit sphere as a mirror transformation of the spectator points.
The inversion takes any point P (other than the origin O) to its image P ′, but also takes P ′ back to
P , so that the result of applying the same inversion twice is the identity transformation on all the
points of the plane other than O . It follows that the inversion of any point inside the reference circle
must lie outside it—in this case, beyond the mirror.
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P = ∂r′

∂r
=

⎛

⎜⎜⎜⎝

∂x ′
∂x

∂x ′
∂y

∂x ′
∂z

∂y′
∂x

∂y′
∂y

∂y′
∂z

∂z′
∂x

∂z′
∂y

∂z′
∂z

⎞

⎟⎟⎟⎠ , (7.3.7)

such that
Gr (r) = PGi (r

−1). (7.3.8)

Since reflection results in a phase shift of π , we subtract the reflected field from the
original one. In this way we obtain the Green function for the fish-eye with a mirror:

G = Gi (r) − PGi (r
−1) . (7.3.9)

For the coordinate transformation (7.3.5), the Jacobian (7.3.7) is equal to

1

r4

⎛

⎝
−x2 + y2 + z2 −2xy −2xz

−2xy x2 − y2 + z2 −2yz
−2xz −2yz x2 + y2 − z2

⎞

⎠ , (7.3.10)

which can be succinctly written in the form

P = 1

r2
∗ 13 − 2

r4
r ⊗ r. (7.3.11)

In this case, P has the simple form

P = 1

x2

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ . (7.3.12)

Hence the second term in (7.3.8) is

− PGi =
(
1 + x2

)2

16x4κ2ξ

⎛

⎝
2D′(ξ) 0 0

0 −D′(ξ) − ξ D′′(ξ) 0
0 0 −D′(ξ) − ξ D′′(ξ)

⎞

⎠ .

(7.3.13)
One verifies that the transversal components of G vanish at r = 1, as they should at
a perfectly reflecting electric mirror.

7.3.2.3 Deducing Field Equality

In order to calculate the stress function for this case, we will need to determine
the correlation function τ , defined in equation (2.136), including both its electric
component τE (the first term) and magnetic component τM (the second term). The

http://dx.doi.org/10.1007/978-3-319-09315-4_2
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determination of τM for the Green function we obtained above turns out to be compu-
tationally intensive. It is possible to circumvent this calculation, however, by demon-
strating a priori the equality of the electric and magnetic components for

1. the impedance matched incident Green function,
2. the reflected Green function, with or without impedance matching.

In fact, it is possible to show that this equality holds in general for impedancematched
cases. For this, we represent the impedance matched Green function G as

G = G + δ(r − r ′) 13
nκ2 , (7.3.14)

and obtain from the wave equation

∇ × 1

n
∇ × G + nκ2G + ∇ × 1

n
∇ × δ(r − r ′) 13

nκ2 = 0. (7.3.15)

Reexpressing the double curl of the delta-function term in terms of derivatives with
respect to r and r ′, we obtain

∇ × 1

n
∇ × G + nκ2G = −∇ × δ(r − r ′) 13×

←−
∇′

n(r)n(r ′)κ2 . (7.3.16)

Notice that the magnetic Green function, defined as

G M = −∇ × G×
←−
∇′

n(r)n(r ′)κ2 (7.3.17)

obeys the same wave Eq. (7.3.16) up to a delta-function term.9 Consequently, G M

agrees with G apart from a delta-function term, but such a term does not matter in
the correlation function (2.136) where we regard r �= r ′ before we take the limit
r ′ → r .

Concerning our second claim, consider G M defined by Eq. (7.3.17) for the trans-
formed Green function Gr that describes the reflected wave and rename r as r ′ (we
recall that Gr is the result of a coordinate transformation). Then we make use of two
geometrical facts. First, n(r)−1∇ × Gi defines a one-form with respect to the effec-
tive geometry with line element n dl [2]. Second, this one-form is invariant under the
transformation r ′ = r−1, because the line element n dl is invariant. Therefore we can
read n(r ′)−1∇′ × Gr as the coordinate-transformed n(r)−1∇ × Gi . Hence we can
also read themagnetic Green function of Gr (with r renamed as r ′) as the coordinate-
transformed G M of Gi . For Gi the entire medium is impedance-matched, and in such
a case we have already established that the magnetic Green function agrees with the

9 It is equivalent to a duality transform of the electric Green function, which obeys the same wave
equation.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
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electric one up to a delta-function term. Consequently, the same must be true for
the transformed Green function Gr that describes the reflection at the mirror. Sep-
arating the two terms in the correlation function (2.136) into electric and magnetic
components, τE and τM , we conclude that τE = τM and obtain10

τ = −2 �c n

π

∫ ∞

0
κ2G(r, r ′; iκ) dκ, (7.3.18)

where we have transferred the prefactor and the integrals from (2.135) to (2.136).
We are now ready to calculate the Casimir stress σ from the electromagnetic Green
function, according to Eqs. (2.135) and (7.3.18).

7.3.2.4 Regularising the Green function

The unregularised stress tensor is, of course, infinite. As we have discussed before,
the standard procedure in Lifshitz theory for regularising the Casimir force is to
subtract from the Green function an auxiliary Green function corresponding to an
infinite homogeneous medium sharing the optical properties of the system at the
point of measurement:

G̃ = G(r) − G0(r). (7.3.19)

This constitutes a kind of renormalisation; the physical contribution to the Casimir
stress is understood to arise due to inhomogeneities in the surrounding material, so
the Casimir force is ‘renormalised’ to zero for a homogeneous space. Unfortunately,
aswe have found, thismethod does not remove all the divergences froman inhomoge-
neous medium, such as Maxwell’s fish-eye. Moreover, modifications to the standard
procedure for regularising the Casimir force must be physically well-motivated.11

However, in this casewe appear to occupy aprivilegedposition: theGreen function
G of an infinitely extended fish-eye medium without a mirror corresponds to the
Green function on the entire surface of the hypersphere, which is a uniform space. It
can only produce a uniform vacuum stress σ0 that does not contribute to the Casimir-
force density ∇ · σ . There is no Casimir force in the bare fish-eye. It follows that the
renormalised Green function

G(r) − G0(r) = Gi (r) − G0(r) − PGi (r
−1) (7.3.20)

has a redundant component

Gi − G0 (7.3.21)

10 This identity has been confirmed to hold for the fish-eye using Mathematica.
11 In Sect. 4.4 we discussed an example of a modification to the Casimir force that would remove
divergences in inhomogeneous media, but at the expense of modifying the value of the force itself.

http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
http://dx.doi.org/10.1007/978-3-319-09315-4_2
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that we can ignore; we only need to focus on the reflected part of the radiation field.
We will thus consider only −P Gi (r−1) in the total Green function (7.3.9) in our
calculation of the correlation function and the stress tensor.

7.3.2.5 Calculating the Correlation Function

In order to compute this bona fide Casimir stress, it is judicious to perform the
integration over κ before the differentiations in (7.3.13). We obtain for the scalar
Green function

∫ ∞

0
D dκ = 1 + ξ2

16π ξ2
. (7.3.22)

It follows that

D′ = 1

8πξ
− 1 + ξ2

8πξ3
, D′′ = − 3

8πξ2
+ 3

(
1 + ξ2

)

8πξ4
, (7.3.23)

and that

D′(ξ)−ξ D′′(ξ) = 1

8πξ
−1 + ξ2

8πξ3
+ξ

(
− 3

8πξ2
+ 3

(
1 + ξ2

)

8πξ4

)
= 1

4πξ3
. (7.3.24)

For the correlation function τ , we thus obtain

τ = c
(
1 + x2

)
�

16π2x4ξ4
13. (7.3.25)

All three eigenvalues of τ are identical in the x-direction and, by virtue of spherical
symmetry, theymust be identical in all directions. Equation (7.3.25) is therefore valid
everywhere in the medium. For the stress function (2.135) this yields

σ = τ − 1

2
Tr [τ ] = −c

(
1 + x2

)
�

64π2x4ξ4
13. (7.3.26)

Substituting for ξ , and reintroducing the refractive index profile n, we obtain

σ = − �c

π2n (1 − r2)4
13. (7.3.27)

This is a remarkable result: we have found a simple, exact expression for the Casimir
stress in a system composed of spherical mirrors and filled with the inhomogeneous
material of Maxwell’s fish-eye – the spherical analogue of a Casimir cavity filled
with an inhomogeneous medium. The stress is negative and falls monotonically, so

http://dx.doi.org/10.1007/978-3-319-09315-4_2
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Fig. 7.4 Index profile n(r)

(grey curve) of the medium
inside the shell and the
resulting vacuum stress σ(r)

(black curve, in units of
�c/a4). As r → a, the stress
σ → ∞

the Casimir-force density ∇ · σ is always attractive in this model. Analytic solutions
of this kind are extremely rare. This result is easily generalised to the case of a system
of arbitrary radius a:

σ = − �c

π2a4n (1 − r2/a2)4
13. (7.3.28)

Close to the mirror r → a the stress and the force tend to infinity, however. At the
mirror itself r = a the stress is actually infinite; it is still not possible to predict the
actual force on the mirror (see Fig. 7.4).

7.4 Speculations on Regularisation

What could the cause of this residual infinity be? At least three possibilities suggest
themselves: it could be because we failed to incorporate spatial dispersion; perhaps
it is due to the idealisation of a perfect curved mirror; or it may be the result of using
the wrong regularisation. It is worth discussing each of these possibilities, though it
seems only fair to caution the reader that we are teetering on the edge of what we
understand, and what follows can at best be construed as informed speculation.

As touching the first possibility, it was tentatively suggested in Part 2 that the
divergence in the Casimir stress that plagues inhomogeneous media may have its
roots in the general failure to fully incorporate their dispersive properties—including
the dependence of the dielectric response on wavenumber as well as frequency. On
the other hand, we might appeal to the fact that, in some sense, the problem of a fish-
eye enclosed in amirror is analogous toCasimir’s problemof the two parallelmirrors,
in that we can reconceive the former as an empty curved space in a spherical mirror.
On the surface of the hypersphere, excluding the mirror, n′ is homogeneous and
equal to unity. Nevertheless, the sphere has curvature, which represents something
of the inhomogeneity of the medium, and this feature cannot be simply removed by
a coordinate transformation, as it was in Chap. 6. A residue of the inhomogeneous
nature of the problem survives—amassing its effects, perhaps, around the spherical
mirror in the limit as r → a.

http://dx.doi.org/10.1007/978-3-319-09315-4_6


146 7 The Casimir Force in Maxwell’s Fish-Eye

This thought brings us to consider the second possibility: our problem clearly
involves a rather crude model of the mirror that encloses the medium. For instance,
as in Casimir’s original thought experiment, the mirror is perfectly reflective for all
frequencies. In reality, mirrors only reflect imperfectly for a certain range of frequen-
cies. On the other hand, in Casimir’s calculation, as we have seen, the regularisation
can be construed as implementing a crude form of dispersion, and we do in fact
recover a finite result, whether the problem is calculated using the mode-summation
or using the stress tensor approach. Blaming the mirrors in this case, then, may seem
like special pleading. Nevertheless, curved boundaries are known to represent addi-
tional challenges in Casimir physics [11]. It remains a distinct possibility that the
divergence at r = a is an artifact of assuming a perfect spherical mirror, whereas a
mirror modelled along more realistic lines might lead to a finite force.

As for the third possibility, it is clear that we abandoned Lifshitz’ regularisation
in our calculation—at least formally. Instead, we focussed on the term due to scat-
tering at the mirror. Herein lies the conundrum: ordinarily, Lifshitz’ regularisation
is supposed to recover this term too, so the two approaches should coincide. But in
this case they do not appear to. It is from the privileged perspective of the fish-eye’s
‘virtual space’ that we are able to identify and isolate a reflection term, which is
not identical to the term that remains from subtracting the auxiliary Green function
of a homogeneous space. But what principles are at stake here? We have described
the motivation behind the classic procedure as aimed at effecting a kind of renor-
malisation, in which the Casimir force is reset to zero for a homogeneous space. In
this schema, contributions to the Casimir stress arise to the extent that the system
differs from a flat homogeneous space. But perhaps this is not the best way to think
about regularisation, and there is a different way to construe the basic procedure—
one which recovers the correct method for extracting finite results for homogeneous
systems, but does not misapply it beyond its proper domain of validity. Suppose, like
Casimir, we were to construe the correct regularisation as essentially effecting an
energy difference between the basic constituents at finite and at infinite separations
in the system.12 The basic constituents, in this case, are the features that make up the
inhomogeneities in the system responsible for scattering electromagnetic radiation,
and what remains from the calculation is the energy required to bring them from
infinity into their present spatial configuration.

For the homogeneous case, the basic constituents assembled at finite separations is
represented by the Green function. The auxiliary Green function, defining a homoge-
neous medium with the properties of the point of measurement, represents the state
in which all the constituents around the locality of that point have been infinitely
separated. It follows that Lifshitz’ procedure for systems composed of homogeneous
media is the correct one. However, this analysis may also offer some physical insight
into what is going wrong with the inhomogeneous case. Here, the basic constituents
(the inhomogeneities) have been brought infinitesimally close to each other, though
it requires in fact an infinite amount of energy to achieve such an arrangement.

12 This picture of regularisation is owed to a discussion with Simon Horsley, in which he suggested
applying Casimir’s interpretation of regularisation to Lifshitz theory too.
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This introduces into the calculation an additional divergence that is untouched by
Lifshitz’ procedure of regularisation. On this understanding, it would appear that
the correct method for calculating Casimir forces in inhomogeneous media involves
an additional step—one in which the ‘grainy’ condition of the medium is properly
acknowledged. Perhaps this is automatically achieved by incorporating spatial dis-
persion.

On this analysis, we also gain a fresh perspective on the fish-eye problem. In this
case, we effectively took the difference between the Green’s function of a fish-eye
with a mirror and without one; the unphysical divergence associated with assembling
the inhomogeneous material of the fish-eye was done away with—almost, but not
quite. As we have observed, the sphere has curvature, which represents something
of the inhomogeneity of the medium.13 With a perfect mirror in place, the shorter
wavelength modes are perhaps able to resolve the shape of the surface to arbitrary
resolution, when in reality they should cease to ‘see’ themirror at all beyond a certain
lengthscale, and should therefore cease to contribute to the Casmir stress. How the
mirror is itself ‘assembled’ as a structure, then, should perhaps also be taken into
consideration. In short, it may be that the answer to this conundrum involves a
superposition of all three of the possibilities first suggested.

7.5 Summary Remarks

Theconundrumof theCasimir force inMaxwell’s fish-eye challenges us to reconsider
not only how the microphysical details of macroscopic media may feature in the
computation of Casimir forces, but also the meaning of regularisation in the context
of Lifshitz theory. It is clear that a Lifshitz-regularised stress tensor does not yield
the correct prediction for the Casimir force in the fish-eye, either with a mirror or
without one.

However, we have been able to determine an exact solution for the Casimir stress
in an inhomogeneous medium by identifying and refocussing the calculation on the
scattered part of the electromagnetic field. It is attractive rather than repulsive, and that
in itself is surprising, given the almost iconic association of repulsive Casimir forces
with spherical geometries. Analytic solutions for Casimir forces are extremely rare
and this is the first exact solution for a non-uniform spherically symmetric medium.
The stress, however, diverges at the boundary, so it is impossible to predict theCasimir
force on the mirror. Arguably, the correct prediction of the force will depend on the
properties of the mirror, and could lead to the prediction of an attractive vacuum
force. If so, this could lend new hope to Casimir’s fascinating explanation of the

13 The inhomogeneous nature of the material cannot simply be removed by a coordinate transfor-
mation, as it was in Chap.6.

http://dx.doi.org/10.1007/978-3-319-09315-4_6
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finestructure constant [5] and the stability of elementary charged particles,14 and
settle once and for all the question of whether or not the Casimir force on a spherical
shell is attractive or repulsive.
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Chapter 8
Outlook

We see through a glass but darkly.

St Paul, 1 Corinthians 13

We are coming to the end of our discussion on the subject of quantum forces in
inhomogeneous media, though there are doubtless many more ‘surprises’ in store in
Casimir Physics even for the savant. It may be helpful, however, to review in brief
some of the surprises and conundrums we have discussed, the interesting results that
these questions gave rise to, and some possible ways ahead for answering them.

8.1 The Cut-Off Independence of the Casimir Energy

In Chap.4, we extended Casimir’s original calculation more generally, noting that,
whilst Casimir forces betweenmacroscopic bodies have been determined for a variety
of systems and geometries [1, 2], most cases involve an idealisation in which the
optical properties of the interacting media are perfectly homogeneous. Casimir’s
approach, detailed in Chap. 1, involves determining the ground-state energy of a
system composed of two parallel plates,

E = �

2

∑

k

ρ(k)ωk, (8.1.1)

and extracting a finite energy ECasimir that depends on the distance a between them.
This is achieved by applying a regulariser to the energy E → E(ξ), as described in
Sect. 1.1.2, effectively separating the energy into two components1 (for small ξ):

E(ξ) = E∞(ξ) + E(a), (8.1.2)

1 Properly, there is a third componentE(a, ξ) that contains mixed terms in a and ξ, where the powers
of ξ are positive. This contribution is zero for ξ = 0, however.
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where E∞(ξ) does not depend upon the distance between the plates. The cut-off ξ is
removed at the last step of the calculation:

ECasimir = limξ→0 [E(ξ) − E∞(ξ)] . (8.1.3)

For the case of vacuum, or a homogeneous medium between the places, ECasimir is
a finite quantity: E∞ diverges in the limit ξ → 0, but E(a) does not. Likewise, we
discovered that, on introducing a gently inhomogeneous fluid between the plates, in
which the optical properties of the medium vary continuously across the length of
the cavity ε → ε(x), the ground-state energy of the system remains finite in the limit
ξ → 0, and consequently a finite mechanical energy, depending only on the distance
a, can be stated exactly.

However, we should not hold any conclusions based on this thought-experiment
too doggedly. Casimir’s model is highly idealised, employing non–dispersive bound-
ary conditions and considering only a simple energy summation of the field modes.
On introducing the fluid into themodel,we alsomade the artificial assumption that the
electric permittivity is independent of frequency, in order to successfully compute the
mode summation. Real media are both dispersive and dissipative. In order to account
for these phenomena properly, and attempt to generalise our result beyond the highly
artificial constraints of this model, we required a more sophisticated approach.

8.2 The Divergence of the Casimir Stress

In Chap.5 we examined the local behaviour of the regularised stress tensor2 com-
monly used in calculations of the Casimir force. As argued in Chap.2, Casimir forces
can be computed using a quantum analogue of the Minkowski stress tensor

σM = (D ⊗ E) + (B ⊗ H) − 1

2
(D · E + B · H) 13, (8.2.1)

which can be written in terms of the electromagnetic Green function describing the
field produced by sources of current within the system, as described in Sect. 2.3.2,
from which a finite stress can be extracted. In this case, this is achieved by a point-
splitting of the stress σ(x) → σ(x, x′), as described in Sect. 2.3.3, in which the stress
is decomposed into the form

σ(x, x′) = σ∞(x, x′) + σC(x, x′), (8.2.2)

2 See Sect. 2.3.3.
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where σ∞(x, x′) does not depend upon the local inhomogeneity of the medium, and
diverges in the limit x → x′. The two points are ultimately reunited at the last step:

σCasimir(x) = limx′→x
[
σ(x, x′) − σ∞(x, x′)

]
. (8.2.3)

This approach is based on Lifshitz theory [3, 4]. For the case of a dielectric medium
varying in one direction, the relevant component of the stress takes the form

σCasimir(x) = 2�c
∑

q=s,p

∞∫

0

dκ

2π

∫

R2

d2k‖
(2π)2

w
rqLrqRe−2aw

1 − rqLrqRe−2aw
, (8.2.4)

expressed in terms of a set of reflection coefficients rqL for a small cavity, as described
in Sect. 5.2. The advantage of using this approach is its capacity to incorporate disper-
sion and dissipation, and therefore to model real media. This represented a marked
improvement on our first thought-experiment. For piece-wise homogeneous media,
σCasimir is finite. However, we found that the stress tensor was not finite anywhere
within an inhomogeneous medium. On introducing a continuously varying medium,
σC decomposes into the form

σC = σ̃(ε,μ) + σ̃∞(ε′,μ′), (8.2.5)

where σ̃∞ is a contribution depending upon derivatives of the dielectric functions
which diverges in the limit x′ → x. Since the Casimir force depends on inhomo-
geneities in the medium, as argued in Sect. 2.3, absorbing this contribution into σ∞
would constitute an additional renormalisation for which there is no general phys-
ical justification. Importantly, this result holds whatever the temporal dispersion,
absorption properties or refractive index profile of the medium.

Conservatively, we can at least conclude that the Casimir stress tensor (5.2.1) for
a piecewise definition of an inhomogeneous medium does not represent an approx-
imation to the continuous case, and that the divergence of the stress tensor is not
removed by the procedure of regularisation usually advocated. Further, as discussed
in Sect. 5.4.1, we have been able to connect the divergence more precisely to the
unphysical contribution of high wave numbers in the continuum limit—a problem
that does not seem to be widely appreciated in the literature. A possible expla-
nation for this anomaly is that the Casmir force does not in fact depend on such
small-scale inhomogeneities as a continuously varying medium introduces, and an
additional physical parameter is needed to allow for the ‘grainy’ nature of real media
(cf. [5, 6]). As discussed in Sect. 5.4.3, the behaviour of the stress tensor in the limit
of high wave numbers might seem to suggest that incorporating the spatially disper-
sive propertiesof media may be a possible solution to this problem,3 in which the
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permittivities and permeabilities become functions of the wavenumber as well as the
frequency:

ε(x,ω) → ε(x,ω, k), μ(x,ω) → μ(x,ω, k). (8.2.6)

But this would be rather surprising: how could it be that such small changes to
the properties of the medium as we have been considering suddenly make the micro-
scopic details relevant? It does seems odd that an arbitrarily small perturbation would
require that kind of detailed information in order to diffuse the divergence. On the
other hand, divergences can be found in the stress on the interface for two homoge-
neous plates of different refractive index that are touching, and an inhomogeneous
medium might be conceived as many such slices piled together [7].

Deriving a plausible theoretical model of the spatially dispersive properties of
media, however, is a far from trivial task, and not one we would wish to undertake
without sufficient cause. Moreover, we did not need detailed information about the
microphysical properties of the medium in order to determine a finite Casimir energy
using the mode summation method. In order to consolidate our understanding of the
problem we have uncovered in Casimir theory, we decided to examine two cases of
inhomogeneous media with interesting properties, to see how they might fit with our
findings, and found ourselves confronted with two conundrums.

8.3 The Casimir Force in a ‘Compressive Medium’

First, in Chap.6, we imagined introducing an inhomogeneous, anisotropic transfor-
mation medium into a cavity of the form

ε(z,ω) = μ(z,ω) =
⎛

⎝
m(z,ω)−1 0 0

0 m(z,ω)−1 0
0 0 m(z,ω)

⎞

⎠ . (8.3.1)

We called this device the C-slice. This impedance-matched profile was specifically
designed to implement a simple distortion of the laboratory coordinate system, effec-
tively compressing or expanding the measure of space for light along one axis. At
first, it seemed this Gedankenexperiment could contradict our earlier conclusions:
since the inhomogeneous C-slice merely modifies the optical distance between the
walls of an empty cavity, it seems we should be able to predict the Casimir force
using Lifshitz theory. For a non-dispersive C-slice occupying the interval x ∈ [a, b],
the Casimir force between two plates separated by a distance d is easily stated:

P = − �cπ2

240
(

d + �(C−1
S − 1)

)4 , (8.3.2)

3 This suggestion is developed further in [7], which draws upon the results of Chap. 5.

http://dx.doi.org/10.1007/978-3-319-09315-4_6
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where

CS = 1

�

b∫

a

m(z,ω) dx, � = b − a. (8.3.3)

The conundum emerges from our earlier discussion, in which the Casimir stress in
an inhomogeneous medium was found to be cutoff-dependent. In fact, there is no
contradiction here, though the case of the C-slice compels us to qualify the nature
of the problem with inhomogeneous media, which pertains more specifically to the
phenomenon of scattering within a medium: the stress diverges and the force is
cutoff-dependent because the reflection coefficients fail to fall off fast enough in the
limit of high wave numbers. However, in the case of the C-slice, we find that the
reflection coefficients are precisely zero for all angles of incidence, and the stress
does not diverge. Such ‘transformation media’ merely change the measure of optical
distance, and do not introduce additional scattering into the cavity. Therefore, it is
possible to determine the Casimir forces for systems incorporating transformation
media using Lifshitz theory, evenwhen they involve continuously changing dielectric
properties.

As a result of exploring this problem, however, wewere able to determine and state
exactly a finite Casimir force for an inhomogeneous medium. Such solutions are rare
in the literature. Moreover, the C-slice has some interesting properties. A suitably
configured C-slice interposed between two parallel plates can reduce the Casimir
force between the plates arbitarily by increasing the effective size of the cavity.
Such a medium could be applied to the problem of quantum stiction. However,
the engineering difficulties in achieving the physical properties of the C-slice for a
sufficiently broad range of the electromagnetic spectrum are extreme.

8.4 The Casimir Force in Maxwell’s Fish-Eye

Finally, in Chap.7, we considered the case of the Casimir force in Maxwell’s fish-
eye—an inhomogeneous metamaterial with an electric permittivity and magnetic
permeability equal to

ε = μ = n = 2n1
1 + (r/a)2

, (8.4.1)

whose effect on light can be interpreted through the stereographic projection of geo-
desics on the surface of the four dimensional hypersphere, as discussed in Sect. 7.2.1.
The hyperspherical geometry of the bare fish-eye would appear to preclude the pos-
sibility of a Casimir force, but the stress tensor (calculated in the usual way) is
paradoxically infinite, even after regularisation.

http://dx.doi.org/10.1007/978-3-319-09315-4_7
http://dx.doi.org/10.1007/978-3-319-09315-4_7
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However, by examining the problem of the fish-eye in a spherical mirror of radius
a, in which we were able to identify and refocus the calculation on the scattered part
of the field in the geometry of the hypershere, we were able to determine an exact
solution for the Casimir stress in an inhomogeneous medium. The Green function
for the total system decomposes into the form

G = Gi(r) − Gr(r), (8.4.2)

where Gi is the Green function of an incident wave and Gr is an image source, and
both waves are travelling on the hypersphere. Our method was to subtract the Green
function correponding to a source on the bare hypersphere, which is equal to Gi, and
compute the stress tensor using the remaining term −Gr(r):

σ(r) = − �c

π2a4n (1 − r2/a2)4
13. (8.4.3)

The stress is attractive. Given the association of repulsive Casimir forces with spher-
ical geometries this seems rather surprising. The stress, however, diverges at the
boundary r → a, so it is still not possible to predict the size of the Casimir force
on a spherical mirror. Any claims to date to have done so should perhaps be treated
more sceptically. It seems likely that the correct prediction of the Casimir force on a
spherical mirror depends (perhaps in detail) on the properties of the mirror, but that
the force itself remains attractive. If so, this could have interesting implications for
the stability of charged particles and the origin of the finestructure constant [8].

Nevertheless, the conundrumof theCasimir stress inMaxwell’s fish-eye resides in
an unresolved tension between the modified regularisation procedure, involving the
subtraction of aGreen function corresponding to a source on the hypersphere, and the
standard procedure of regularisation within Lifshitz theory, involving the subtraction
of an auxiliary Green function corresponding to an infinite homogeneous space.
Dissolving this conundrum satisfactorily constitutes a challenge for future research
in this area.

8.5 Beyond the Diverging Casimir Force

Let us end on an empirical note. Whilst Casimir-Lifshitz forces are notoriously dif-
ficult to measure, and the number of experiments investigating Casimir interactions
between solid bodies is fairly small, the experimental field for Casimir-Polder forces
is comparatively rich, and one in which subtle measurements can be made.4 A pos-
sible generalisation of the work we have discussed in the last few chapters could
involve the investigation of Casimir-Polder forces in inhomogeneous media. Does
the divergence we have discovered in the Casimir force also affect the interaction
between a solid body and a particle? Either way, the answer to this question seems

4 See Sect. 1.2.2.

http://dx.doi.org/10.1007/978-3-319-09315-4_1
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Fig. 8.1 A chamber is filled
with an inhomogeneous fluid
(the fluid is becoming denser
towards the bottom).
A particle (red) is confined
within the chamber in a
harmonic trap by a laser.
A body, sitting on the surface
of the fluid, is brought
steadily closer to the particle
by siphoning off the fluid
with a tap, modifying the
motion of the particle in the
trap through the
Casimir-Polder interaction

Fig. 8.2 This setup is
identical to Fig. 8.1 except the
particle is now held fixed by
optical tweezers and excited
by a laser. The changes in its
energy levels as the attracting
body is brought closer are
measured using spectroscopic
techniques

likely to illuminate further the problems we have been considering. Moreover, such
a project may be amendable to experimentation:

Imagine the following scenario: it is possible to optically confine a particle in
a liquid using a laser. Suppose the liquid is an inhomogeneous fluid (for example,
sugar dissolved in water, under gravity). Suppose further that we introduce a mirror
that makes contact with the surface of the water, and that the fluid can be drained to
different levels with a siphon, so that the distance between the reflective body and the
confined particle is a variable we can control. The effect of the mirror on the particle
could be studied using a confinement in which the particle undergoes oscillatory
motion. The Casimir-Polder force would change the trapping potential, modifying
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the motion in a measurable way (Fig. 8.1). It seems likely that the viscious forces
due to the surrounding medium would introduce complications, however.

Alternatively, the effect of the Casimir-Polder force on the particle could be ascer-
tained by spectroscopic techniques. In this case, the particle is held in place in the
fluid using optical tweezers. It is then excited using a laser. As the attracting body is
brought closer, however, the Casimir-Polder potential will modify the energy levels
of the particle. The changes in its energy levels might be ascertained using spec-
troscopy, and the size of the modifying potential inferred (Fig. 8.2).

If the divergence in the Casimir stress in inhomogeneous media similarly infects
the predictions of the Casimir-Polder force, an arrangement like one of these could
be used to compare prediction against experiment, providing the finite curve against
which a properly modified form of Lifshitz theory should be made to fit. However,
such an experiment, if possible, will have to await further theoretical developments.
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Appendix A
Causality and Wick Rotation

A.1 Concerning Causality

Consider a physical system1 perturbed by an input I , resulting in a response R at
time t . We can relate the input and the response via a linear response function G as
follows:

R(t) = 1√
2π

∞∫

−∞
G(t − t ′)J (t ′) dt ′. (A.1)

For example, J (t ′) could be a current source at time t ′ producing an electromagnetic
field measured at t , where G is the Green function of the electromagnetic field.
We assume that G depends only on t − t ′; the system under consideration should
respond to a sharp input at t = t0 in the same way as it would respond to the input
at a subsequent time t = t0 + τ :

R(t + τ ) = R(t). (A.2)

A physical system that receives an input at time t cannot respond at times prior to t .
That is, G(τ ) = 0 for τ < 0. This is known as the causality requirement, and it may
be expressed in the form

R(t) = 1√
2π

t∫

−∞
G(t − t ′)J (t ′)dt ′, (A.3)

inwhich the response at t is written as aweighted linear superposition of all responses
prior to t . We may also assume that a physical system at time t is not affected by an
input in the remote past, i.e. that G(τ ) → 0 as τ → ∞. This may be construed as the

1 This section is indebted to the exposition of the theory of analytic functions in [1].
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requirement for some mechanism of dissipation in a physical system that dampens
the response to an impulse so that it eventually becomes negligible:

∞∫

0

|G(τ )|dτ = M < ∞, (A.4)

where M is the finite upper-bound of the integral. These physical assumptions about
the system may be summarised in the form of three conditions on G:

i G(τ ) is bounded for all τ .
ii |G(τ )| is integrable, so G(τ ) → 0 faster than 1/τ as τ → ∞.
iii G(τ ) = 0 for τ < 0.

In the Fourier transform,2 Eq. (A.1) can be rewritten as

R(ω) = G(ω)J (ω). (A.5)

It follows from (i) and (ii) that both G(τ ) and G(ω) are square integrable. In electro-
magnetism, the presence of dissipation in a system typically manifests in the form
of an imaginary component (for example, in the electric permittivity). We must now
extend G(ω) to the complex plane. Recalling that G(τ ) = 0 for τ < 0, we define

G(z) = 1√
2π

∞∫

0

G(t)eiztdt = 1√
2π

∞∫

0

G(t)eiωt e−ω′tdt, (A.6)

where z = ω + iω′. The causality requirement (iii) implies that the term e−ω′t is
a decaying exponential in the upper half-plane (ω′ > 0). Restating z in the form
|z|eiφ =⇒ ω′ = |z|sinφ, we deduce that

|g(z)| ≤ 1√
2π

M

∞∫

0

dt e−(|z| sinφ)t = M√
2π |z|sinφ

, (A.7)

in the interval 0 < φ < π, where we have invoked assumption (A.4). Clearly, this
expression tends to zero in the limit |z| → ∞. For φ = 0 or π, we obtain ω′ = 0,
leaving G(ω), which is square integrable. It follows that, in any direction in the upper

2 Two quantities F(ω) and f (t) are Fourier transform pairs when they are connected by the Fourier
transform

F(ω) = 1√
2π

∞∫

−∞
f (t)eiωtdt.
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half-plane, |G(z)| → 0 as |z| → ∞. It is also clearly apparent, on this representation
of G(z), that the function is analytic in the upper half-plane3 (ω′ > 0):

dnG

dzn
= 1√

2π

∞∫

0

G(t)
dn

dzn
eiztdt = in

√
2π

∞∫

0

tnG(t)eiωt e−ω′tdt. (A.8)

In summary, for any G(z) arising from G(t) that satisfies our original assumptions
(i), (ii) and (iii), it follows that

i. |G(z)| → 0 as |z| → ∞.
ii. G(z) is analytic in the upper half-plane (ω′ > 0).

These are also the conditions which, if satisfied, induce a Hilbert transform pair
relating the real and imaginary parts of a complex function [1]. It follows that

ReG(ω) = 1

π
P

∞∫

−∞

ImG(ω′)
ω′ − ω

dω′, (A.9)

ImG(ω) = − 1

π
P

∞∫

−∞

ReG(ω′)
ω′ − ω

dω′, (A.10)

where P denotes the principal-value integral.4 Since only positive frequencies have
empirical meaning in this context, these relations should be rewritten in amore useful
form. From (A.6), we deduce the so-called reality condition:

G∗(z) = G(−z∗), (A.11)

having noted that G(t) is real. If z is real, i.e. z = ω, by comparing the real and
imaginary parts of (A.11), we deduce that

ReG(ω) = ReG(−ω) (A.12)

ImG(ω) = −ImG(−ω), (A.13)

i.e. ReG(ω) is an even function, and ImG(ω) is odd. Using equation (A.16), split
into two integrals with limits {−∞, 0} and {0,∞}, and substituting ω′ → −ω′ in

3 These arguments do not exclude the possibility of a singularity at ω′ = 0. However, the Hilbert
transform is tolerant of bounded branch point singularities on the real axis [1].
4 The principal-value integral of a function f (x) is defined

P

x ′∫

−x ′
f (x) dx =

α−δ∫

−x ′
f (x) dx +

x ′∫

α+δ

f (x) dx .
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the first integral, we obtain

ReG(ω) = 1

π
P

0∫

∞

ImG(−ω′)
ω′ − ω

dω′ + 1

π
P

0∫

−∞

ImG(ω′)
ω′ − ω

dω′. (A.14)

Using the relation (A.13), we can rewrite the above in the compact form

ReG(ω) = 2

π
P

∞∫

0

ω′ImG(ω′)
ω′2 − ω2 dω′. (A.15)

Similarly, using Eqs. (A.10) and (A.12), we obtain

ImG(ω) = −2ω

π
P

∞∫

0

ReG(ω′)
ω′2 − ω2 dω

′. (A.16)

These are the Kramers–Kronig relations, which connect the real and imaginary parts
of the physical quantity G(ω) together for real values of the argument ω by a disper-
sion relation. Since the imaginary part of a response function typically describes how
energy is dissipated in a physical system, the Kramers–Kronig relations imply that
observing the dissipative response of a system is sufficient to determine its dispersive
effects, and vice versa.

A.2 Wick Rotation

The Casimir Effect is a broadband phenomenon, and the computation of Casimir
forces typically involves the integration of quantities over awide rangeof frequencies.
These integrals are oscillatory and slow to converge. However, using contour-integral
techniques, it is possible to transform real-frequency integrals into integrals along the
positive imaginary axis, resulting in more rapid convergence. Consider the quantity

∞∫

0

ImG(ω) dω = 1

2i

∞∫

0

dω
[
G(ω) − G∗(ω)

]
. (A.17)

Recalling (A.11), we can rewrite this integral as

1

2i

∞∫

0

dω [G(ω) − G(−ω)] = 1

2i

∞∫

0

dω G(ω) + 1

2i

−∞∫

0

dω G(ω). (A.18)
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As a consequence of the causality of the physical quantities under consideration
(for example, electromagnetic fields produced by fluctuations in the material arise
after the source currents are generated, not before), we conclude that they are ana-
lytic functions in the upper half of the complex frequency plane. Cauchy’s theorem
requires that any closed integral in the upper part of the complex plane must vanish:

∮
G(ω) dω = 0. (A.19)

This analyticity implies than our integral can be arbitrarily deformed to any contour
in this part of the complex plane. Setting ω = iξ, dω = idξ, with real ξ running
over the positive imaginary axis, and introducing polar coordinates ω = |ω|eiφ, we
may write

∞∫

0

G(ω) dω + lim|ω|→∞

π/2∫

0

iω dφ G(ω) +
0∫

∞
idξ G(iξ) = 0, (A.20)

where we follow a contour composed of an integration along the positive real axis, an
integration over a quarter-circle to the imaginary axis, and a final integration down
the imaginary axis, closing the contour. It follows that

∞∫

0

G(ω) dω = i

∞∫

0

dξ G(iξ) − lim|ω|→∞ i

π/2∫

0

dφ ωG(ω). (A.21)

Similarly, we find that

−∞∫

0

G(ω) dω = i

∞∫

0

dξ G(iξ) + lim|ω|→∞ i

π∫

π/2

dφ ωG(ω). (A.22)

In the limit |ω| → ∞, the integrals along the infinite quarter-circles vanish. We thus
obtain the useful transformation

∞∫

0

dω ImG(ω) =
∞∫

0

dξ G(iξ). (A.23)

Reference

1. F.W. Byron, R.W. Fuller,Mathematics of Classical and Quantum Physics (Dover,
New York, 1992)



Appendix B
Maxwell’s Stress Tensor

Consider the expression for the Lorentz force density:

f = ρE + J × B. (B.1)

For simple problems, calculating the force on a point charge using the Lorentz force
law is straightforward. For more general and more complicated cases, this becomes
increasingly difficult. We can eliminate the density ρ and the current J by using
Maxwell’s equations:

∇.E = ρ

ε0
, ∇.B = 0, ∇ × E = −∂B

∂t
, ∇ × B = μ0J + μ0ε0

∂E
∂t

, (B.2)

rewriting the Lorentz force solely in terms of the fields:

f = ε0(∇.E)E + 1

μ0
(∇ × B) × B − ε0

∂E
∂t

× B. (B.3)

The time derivative can be rewritten in terms of the Poynting vector,

∂

∂t
(E × B) = ∂E

∂t
× B + E × ∂B

∂t

= ∂E
∂t

× B − E × (∇ × E). (B.4)

It follows that
∂E
∂t

× B = ∂

∂t
(E × B) + E × (∇ × E). (B.5)

We may then write

f = ε0(∇.E)E + 1

μ0
(∇ × B) × B − ε0

∂

∂t
(E × B) − ε0E × (∇ × E). (B.6)
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Collecting the B and E terms, introducing the zero-term 1
μ0

(∇.B)B = 0 and utilising
the cross product rule, we obtain

f = ε0 ((∇.E)E − E × (∇ × E)) + 1

μ0
((∇.B)B − B × (∇ × B)) − ε0

∂

∂t
(E × B).

(B.7)
The double-curls can be replaced using the curl identity

1

2
∇ A2 = A × (∇ × A) + (A · ∇)A (B.8)

to give

f = ε0 ((∇.E)E + (E · ∇)E) + 1

μ0
((∇.B)B + (B · ∇)B))

−1

2
∇

(
ε0E2 + 1

μ0
B2

)
− ε0

∂

∂t
(E × B).

However, this is a cumbersome expression. It is more convenient to collect these
terms within a single tensor:

σ̂ = ε0E ⊗ E + 1

μ0
B ⊗ B − 1

2

(
ε0E · E + 1

μ0
B · B

)
13. (B.9)

Consequently, the force can be re-expressed in terms of the stress σ̂ and the Poynting
vector S,

f + ε0
∂

∂t
S = ∇ · σ̂, S = 1

μ0
(E × B). (B.10)

This stress tensor is known as the Maxwell stress tensor, which governs the flow of
momentum associated with the electromagnetic field.



Appendix C
Green Functions from Transfer Matrices

The Casmir stress can be written in terms of reflection coefficients (2.4.26), or equiv-
alently in terms of a Green function (2.3.75). We demonstrate here that the Green
function derived from the transfer matrices (involving a piece-wise approximation of
themedia into homogeneous slices) recovers the samenumerics as theGreen function
obtained from a numerical solution of the wave equation. The two analytic formula-
tions of the stress above are identical. It follows that the piece-wise approximation
(at a suitably high resolution) recovers the same numerics as the stress computed
using a Green function obtained from a numerical solver for a continuous refractive
index profile n(x).

C.1 Solving the Wave Equation Numerically

We are considering a planar geometry in which the media is inhomogeneous in x . To
his end, we need only concern ourselves here with finding the scalar Green function
g(x), which is the solution of the wave equation [1]:

∂x
1

n(x)
∂x g(x, x0) −

(
u2 + v2

n(x)
+ κ2n(x)

)
g(x, x0) = δ(x − x0). (C.1)

For simplicity, the medium is impedance-matched: ε(x) = μ(x). It is difficult to
solve the equation numerically in this form, however, as standard numerical solvers
do not know how to ‘handle’ the dirac-delta function. However, this difficulty can
be easily circumvented. The scalar Green function g(x, x0) can be rewritten in the
following form:

gN (x, x0) =
{

c1gl(x) x ≤ x0,

c2gr (x) x > x0,
(C.2)
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where gl(x) and gr (x) solve the equation

∂x
1

n(x)
∂x gl,r (x) −

(
u2 + v2

n(x)
+ κ2n(x)

)
gl,r (x) = 0, (C.3)

for x < x0 and x > x0 respectively. By solving the differential equation for gl(x)

and gr (x) separately, away from the source point, the dirac-delta function disappears
from the differential equation. We obtain g(x, x0) by piecing both solutions together
(C.2) in a way that satisfies the original differential equation (C.1), i.e. by choosing
the correct values for the coefficients c1 and c2. The coefficients can be uniquely
specified by two simultaneous equations. First, we require that

c1gl(x) = c2gr (x), (C.4)

i.e. that the two solutions (to the left and right of the source point) should be identical
at the source point. The second condition on the coefficients should recover the
delta-function. Consider again the equation

∂x
1

n(x)
∂x g(x) −

(
u2 + v2

n(x)
+ κ2n(x)

)
g(x) = δ(x − x ′). (C.5)

Integrating both sides with respect to x , between the limits of the source point and
the point of measurement, we obtain

x0∫

x

dx ′
[
∂x ′

1

n(x ′)
∂x ′ g(x ′)

]
−

x0∫

x

dx ′
(

u2 + v2

n(x ′)
+ κ2n(x ′)

)
g(x ′) = 1. (C.6)

In the limit as x → x0, the second integral tends to zero, and we obtain

lim
x→x0

[
1

n(x)
∂x g(x) − 1

n(x0)
∂x g(x)|x→x0

]
= 1. (C.7)

Thus we arrive at the second condition on the coefficients:

[c1∂xgl(x) − c2∂xgr (x)]x→x0 = n(x0). (C.8)

These two conditions together determine the effect of the source. Suppose we intro-
duce an inhomogeneous medium between x = x1 and x = x2. For x < x1 and
x > x2, however, there is only vacuum. In these outer regions, the wave equation
(C.1) is easily solvable, having solutions of the form

Aewx + Be−wx , (C.9)
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where w = √
u2 + v2 + n(x)κ2. For x < x1, there is no reflection from the left,

and for x > x2, here is no reflection from the right, so we may impose the boundary
conditions

gl(x1) = 1, ∂xgl(x1) = w(x1), (C.10)

gr (x2) = 1, ∂xgr (x2) = −w(x2). (C.11)

The magnitude of gl(x1) and gr (x2) may be fixed arbitrarily; it is the ratio of the
functions and their derivatives at x1 and x2 that is important. Thus equation (C.3) can
be solved with the boundary conditions (C.10) and (C.11), and equations (C.4) and
(C.8) can be solved simultaneously to determine the constants c1 and c2, uniquely
determining the scalar Green function g(x, x0) via (C.2).

C.2 Green Function from Transfer Matrices

Here, we demonstrate how to recover the Green function using a piecewise approxi-
mation of the inhomogeneous region (x1, x2) and applying transfer matrices between
the pieces to determine the field in each slice. We divide the medium between x1
and x2 into t slices of width a = (x2 − x1) /t . The left-hand side of each slice is
positioned at Xi :

Xi = X (i) = i − 1

t − 1
(x2 − x1) + x1 − a

2
, (C.12)

and each slide is characterised by a constant refractive index

N (i) = n
(

X (i) + a

2

)
, (C.13)

where n(x) is the refractive index profile of the system, so that the first slide is centred
on X1 + a/2 = x1, with constant refractive index N (1) = n(X (1) + a/2) = n(x1),
and the last slide is centred on Xt + a/2 = x2, with constant refractive index
N (t) = n(X (t) + a/2) = n(x2). Consider a cavity between Xi and Xi+1. We will
number this cavity i . Let us consider the field in cavity i . Sweeping from left to right,
the field terms in the adjacent cell i + 1 can be stated in terms of the field terms in
cell i . At the interface, we require that

E (R+)
i + E (R−)

i = E (L+)
i+1 + E (L−)

i+1 , (C.14)

wi

ni
E (R+)

i
wi a − wi

ni
E (R+)

i
−wi a = wi+1

ni+1
E (L+)

i+1 − wi+1

ni+1
E (L−)

i+1 , (C.15)

where E (R)
i = E (R+)

i + E (R−)
i is the field at the right of cell i , consisting of left

and right wave amplitudes, E (L)
i+1 = E (L+)

i+1 + E (L−)
i+1 is the field at the left of cell
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i + 1, which also consists of left and right wave amplitudes, and wi = w(i) =(
u2 + v2 + N (i)2κ2

)1/2
is a Fourier-transformed wave number. This may be written

more succinctly as

(
E (L+)

i+1

E (L−)
i+1

)
= 1

2

⎛
⎝

(
1 + wi

wi+1

ni+1
ni

) (
1 − wi

wi+1

ni+1
ni

)
(
1 − wi

wi+1

ni+1
ni

) (
1 + wi

wi+1

ni+1
ni

)
⎞
⎠

(
E (R+)

i

E (R−)
i

)

= ti→i+1

(
E (R+)

i

E (R−)
i

)
. (C.16)

To account for the evolution of the field, we introduce the phase term

�i+1 =
(
e−wi+1a 0

0 ewi+1a

)
. (C.17)

Then the combined transfer matrix becomes

T R
i→i+1 = �i+1ti→i+1 = 1

2

⎛
⎜⎝

(
1 + wi

wi+1

ni+1
ni

)
e−wi+1a

(
1 − wi

wi+1

ni+1
ni

)
e−wi+1a

(
1 − wi

wi+1

ni+1
ni

)
ewi+1a

(
1 + wi

wi+1

ni+1
ni

)
ewi+1a

⎞
⎟⎠ ,

(C.18)

which gives the field on the far right-hand side of a cell i + 1 in terms of the field on
the far right-hand side of a cell i , i.e.

(
E (R+)

i+1

E (R−)
i+1

)
= T R

i→i+1

(
E (R+)

i

E (R−)
i

)
. (C.19)

By induction, the field at the far right-hand side of cell k can be expressed in terms
of the field at the far right-hand side of cell j , by successively applying the transfer
matrices inbetween:

(
E (R+)

k

E (R−)
k

)
= T R

k−1→k · · · T R
i→i+1

(
E (R+)

j

E (R−)
j

)

=
k∏

i= j

T R
i→i+1

(
E (R+)

j

E (R−)
j

)
= T

R
j→k

(
E (R+)

j

E (R−)
j

)
. (C.20)

Using this formalism, we will now recover the scalar Green function g(x, x0) for a
source at x = x0. We will label the cell in which the source has been placed with i0.
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Consider the field emerging into vacuum. According to (C.11), a right-going field
should emerge at t ; we will assign it a magnitude of unity. It follows that:

(
1
0

)
=

t−1∏
i= j

T R
i→i+1

(
E (R+)

i

E (R−)
i

)

= T R
t−1→t · · · T R

i0+1→i0+2 · T R
j→ j+1

(
E (R+)

j

E (R−)
j

)
(C.21)

= T
R
j

(
E (R+)

j

E (R−)
j

)
.

The successive multiplication terminates at t − 1, as the final term Tt−1→t evolves
the field up to the left-boundary of cell t , which has the form given above. It follows
that (

E (R+)
j

E (R−)
j

)
= 1

detTR
j

⎛
⎝

(
T

R
j

)
2,2

−
(
T

R
j

)
1,2

−
(
T

R
j

)
2,1

(
T

R
j

)
1,1

⎞
⎠

(
1
0

)
(C.22)

and hence

E (R+)
j =

(
T

R
j

)
2,2

detTR
j

, E (R−)
j = −

(
T

L
j

)
2,1

detTR
j

. (C.23)

According to (C.10), a left-going field should emerge from slice 1; again, we will
assign it amagnitude of unity. Recalling that, in this formalism, the field is propagated
from left to right, we deduce:

(
E (L+)

j

E (L−)
j

)
=

j−1∏
i=1

T L
i→i+1

(
0
1

)

= T L
j−1→i · · · T L

2→3 · T L
1→2

(
0
1

)
(C.24)

= T
L
j

(
0
1

)
.

The multiplication terminates at i0 − 1, as this brings the field propagation to a close
at the left-hand boundary of cell i0, as required. It follows that

E (L+)
j =

(
T

L
j

)
1,2

, E (L−)
j =

(
T

L
j

)
2,2

. (C.25)

To define the transfer matrix T L
i→i+1, in this case, we note that the field on the left of

cell i must be evolved through the medium of cell i before the next set of boundary
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conditions are applied, and that consequently wemust redefine the combined transfer
matrix:

T L
i→i+1 = ti→i+1�i . (C.26)

We can formulate different expressions for the field in a cell, which hold up to a
multiplicative constant:

fl(i, q) = E (L+)
i e−wi q + E (L−)

i ewi q ,

fr (i, q) = E (R+)
i ewi q + E (R−)

i e−wi q ,

where q is a displacement of the field from the left-hand-side of the cell. Applying
equations (C.23) and (C.25), it follows that

fl(i, q) =
((

T
L
j

)
1,2

(
T

L
j

)
2,2

) (
e−wi q

ewi q

)
, (C.27)

fr (i, q) = 1

detTR
j

((
T

R
j

)
2,2

(
T

R
j

)
2,1

) (
e−wi q

ewi q

)
. (C.28)

For gl , the field is evolved forward to position q. For gr , it must be evolved backwards
(from the right-hand-side) of the cell to position q. To map these fields to the real
axis, we create a selection function:

b(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 X1 ≤ x < X2

2 X1 ≤ x < X2

... ...

t Xt−1 ≤ x < Xt

(C.29)

Finally, we introduce the scalar Green function for the field in the system:

gT (x, x0) =
{

d1gl(x) x1 ≤ x ≤ x0
d2gr (x) x0 < x ≤ x1

(C.30)

where

gl(x) = fl(b(x), x − X [b(x)]),

gr (x) = fr (b(x), x − X [b(x)]).

The constants d1 and d2 may be found by applying equations (C.4) and (C.8), replac-
ing c1 with d1 and c2 with d2, and solving simultaneously.
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Fig. C.1 Low resolution comparison. Left The refractive index profile. The blue line is a plot of
the particular profile n(x) used in this example. The purple line is a plot of the values of n(x) in
this piecewise approximation. Right The blue line is a plot of gN , and the purple line is a plot of
gT , for the case x0 = (Log[3])/3, u = 1, t = 4
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Fig. C.2 Moderate resolution: gN and gT for the case x0 = (9Log[3])/19, u = 1, t = 20. The
legend is otherwise identical to Fig.C.1

C.3 Comparison

Let gN denote the scalar Green function recovered from a numerical solution to
the wave equation, as described in Sect.C.1, and let gT denote the Green function
determined using the transfer matrix method in Sect.C.2. Comparative plots
demonstrate that the transfer matrix method outlined above recovers the numeri-
cal solution of the wave equation, as the number of slices is increased. In Fig.C.1,
the number of slices is very small, and gT is a crude fit for gN . However, using only
20 slices, gT is already a much better approximation, and is difficult to distinguish
from the plot of gT in Fig.C.2. We also include a second case, involving different
wave numbers, in Figs.C.3 and C.4. The accuracy of the approximation gT continues
to improve as the number of slices in the stack is increased.

To recapitulate briefly, we have seen that the wave equation for the case of an
inhomogeneous profile can be solved numerically, and that the solution obtained
using a numerical solver may be approximated to an arbitrary degree of accuracy
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Fig. C.3 Low resolution: gN and gT for the case x0 = (Log[3])/3, u = 1, t = 4. The legend is
otherwise identical to Fig.C.1
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Fig. C.4 Moderate resolution: gN and gT for the case x0 = (9Log[3])/19, u = 1, t = 20. The
legend is otherwise identical to Fig.C.1

using a piecewise approximation of the profile and determining the relevant transfer
matrices.

Reference

1. U. Leonhardt, Essential Quantum Optics (Cambridge University Press, Cam-
bridge, 2010)



Appendix D
Möbius Transformations

A Möbius transformation5 is a mapping in the extended complex plane6 C̃ of the
form

w(z) = az + b

cz + d
, w, z, a, b, c, d ∈ C̃. (D.1)

D.1 Theorems on Möbius Transformations

Theorem D.1 Möbius transformations are generated (under composition) by

1. translations—maps of the form z �→ z + k, k ∈ C̃.
2. scalings (or dilations)—z �→ kz, k ∈ C\{0},
3. inversions—z �→ 1/z,

Proof Any Möbius transformation can be expressed as a chain of elementary trans-
formations, w = z4(z3(z2(z1(z)))),

w = z4 = z3 + a

c
, z3 = bc − ad

c2
z2, z2 = 1

z1
, z1 = z + d

c
. (D.2)

z1(z) and z4(z) are translations, z2(z) is an inversion, z3(z) is a scaling. Clearly,
Möbius transformations form a subset of the group of transformations generated by
translations, scalings and inversion. �
Theorem D.2 Möbius transformations are bijections on C̃.

Proof Möbius transformations are compositions of translations, scalings and inver-
sions (see Theorem D.1). Since

5 This section is indebted to the discussion of Möbius transformations in [1].
6 The extended complex plane is defined as the set C ∪ {∞}, denoted C̃.
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1. the translations are bijections: z �→ z + k,∞ �→ ∞ with inverse k �→ z − k,
∞ �→ ∞,

2. the scalings are bijections: z �→ kz,∞ �→ ∞, with inverse z �→ z/k, ∞ �→ ∞,
3. the inversions are self-inverting bijections: z �→ 1/z, 0 �→ ∞,∞ �→ 0.

A Möbius transformation is also a bijection. �
Theorem D.3 Möbius transformations map circles to circles.

Proof Möbius transformations are compositions of translations, scalings and inver-
sions (see Theorem D.1). It is clear that translations and scalings preserve circles.
Consider then the inversion w = 1/z. A circle (in the domain) of radius r0 centred
on the x−axis is described by the equation

|z − x0|2 = r20 ⇒ r20 = x20 − x0(z + z∗) + |z|2. (D.3)

Consider the equation of a circle (in the image),

|w − x ′
0|2 = r ′2

0 ⇒ |1/z − x ′
0|2 = r ′2

0 ⇒ |1 − x ′
0z|2 = r ′2

0 |z|2 (D.4)

Thus,
r ′
0
2|z|2 = |1 − x ′

0z|2 = 1 + x ′
0
2|z|2 − x ′

0(z + z∗)
= 1 − x ′

0
x0

(x02 − r02 + |z|2) + x ′
0
2|z|2 (D.5)

Then, with the parameters

x ′
0 = x0

x20 − r20
, r ′

0 = r0
|x20 − r20 | (D.6)

the equation of the transformed circle is satisfied. For x20 = r20 the circles in z-space
are transformed into straight lines in w-space, which we may regard as circles with
infinite radius. Conversely, straight lines in z-space are transformed into circles in
w-space, as the same argument may be applied for z = 1/w. Thus circles map into
circles for real x0, for circles centred at the x-axis. We can generalise by rotation for
any centre point.

D.2 Circles on the Sphere in Stereographic Projection

Here, we shall establish that circles are mapped to circles in the stereographic pro-
jection. We begin by imagining a circle centred at the North Pole of the sphere. It is
obvious that this will project as a circle onto the plane; the stereographic projection
is rotationally symmetric. We now imagine rotating the circle on the sphere (that is,
allowing its centre to slide from the North Pole to some other point on the sphere’s
surface). By so doing, we can reach any other circle on the sphere of the same radius.



Appendix D: Möbius Transformations 175

As it happens, rotation on the sphere corresponds to a particular Möbius trans-
formation (D.1) of the projected points (7.2.6) in the complex plane. The trans-
formation is

z′ = az + b

cz + d
(D.7)

where
a = expiβ cos γ, b = − expiβ expiα sin γ (D.8a)

c = exp−iα sin γ, d = cos γ. (D.8b)

so that

z′ = expiβ z cos γ − expiα sin γ

z exp−iα sin γ + cos γ
. (D.9)

It is a mapping from one set of points in the plane to another. For ease of analysis,
we can rewrite this as

z′ = expiα+iβ z′
0(z exp

−iα), z0 = z cos γ − sin γ

z sin γ + cos γ
, (D.10)

where z0 denotes the Möbius transformation (D.9) with α = β = 0. Clearly, the
angle α rotates the points on the z-plane, the transformation z′

0 is effected, and then
followed by another rotation of −(α + β). Consider the stereographic projection in
inverse (7.2.7),

X + iY = 2z

1 + |z|2 , Z = |z|2 − 1

|z|2 + 1
. (D.11)

For rotations on the complex plane z → z expiθ, the spherical coordinate Z obviously
remains unchanged, but X and Y are transformed:

X + iY = 1

1 + |z|2
(

z expiθ cosα + i ziθ sinα
)

⇒ (D.12)

(
X
Y

)
= 2

1 + |z|2
(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
. (D.13)

Thus rotations on the complex plane correspond to rotations of the sphere around
the Z -axis; the circles on the sphere are preserved. It remains then to consider the
effect of z′

0, i.e. the transformation (D.9) for α = β = 0,

z → z′ = z cos γ − sin γ

z sin γ + cos γ
. (D.14)

Considering again the inverse stereographic projection (7.2.7), using

http://dx.doi.org/10.1007/978-3-319-09315-4_7
http://dx.doi.org/10.1007/978-3-319-09315-4_7
http://dx.doi.org/10.1007/978-3-319-09315-4_7
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X ′ = 2Re(z′)
1 + |z′|2 , Y ′ = − 2Im(z′)

1 + |z′|2 Z ′ = |z′|2 − 1

|z′|2 + 1
, (D.15)

and having computed

|z′|2 + 1 = 1
P

(|z|2 + 1
)
,

|z′|2 − 1 = 1
P

(|z|2 cos 2γ − cos 2γ − 2Re(z) sin 2γ
)
,

2Re(z′) = 1
P (|z|2 sin 2γ + 2 cos 2γRe(z) − sin 2γ),

(D.16)

where

P = |z|2 sin2 γ + cos2 γ + Re(z) sin 2γ, (D.17)

we find that

X ′ = X cos 2γ + Z sin 2γ,

Y ′ = Y,

Z ′ = −X sin 2γ + Z cos 2γ,

(D.18)

yielding
(

X ′
Z ′

)
= 2

1 + |z|2
(

cos 2γ sin 2γ
− sin 2γ cos 2γ

) (
X
Z

)
. (D.19)

Clearly, this describes a rotation around the Y -axis of the sphere. Taken altogether
then, the Möbius transformation (D.9) describes a rotation around the Z -axis by the
angle α, following by a rotation around the Y -axis by γ, ending with a rotation again
about the Z -axis by −(α + β); these correspond to the Euler angles that describe
any rotation on the sphere. We are now at liberty to argue that since

1. we can begin with a circle in the complex plane (projected from the circle centred
at the North Pole),

2. Möbius transformations map circles to circles, and
3. rotation on the sphere (by means of which we can reproduce all the great cir-

cles of the light rays in the virtual space) corresponds to a particular Möbius
transformation

we conclude that the light rays in Maxwell’s fish-eye follow circles in physical space
(as well as virtual space).
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